
Bitcoin Prediction Markets

James Pierog

Glimpse Ltd.

james@glimpse.markets

December 30, 2025

1 Introduction

A prediction market is an information market. It turns disagreement into a measurable signal by

letting participants express conviction through trade. Instead of trading an asset directly, participants

trade Event Contracts that pay off based on the outcome of a specific event. The price of an Event

Contract can be read as a market-implied probability, and that probability updates continuously as

traders incorporate news, research, and macro conditions. In other words, prediction markets create a

public forecast stream that is native to uncertainty.

This paper develops and analyzes a Bitcoin-native automated market maker that provides liquidity

for Event Contracts, enabling a scalable forecast of market-implied probabilities that can be used for

hedging and decision-making. We focus specifically on financial forecasting and implement a liquidity-

sensitive Logarithmic Market Scoring Rule (LS-LMSR) denominated natively in Bitcoin. The following

sections derive the Bitcoin-denominated cost function, prove its bounded-loss property, analyze the

profit-and-loss landscape for liquidity provision under different parameter calibrations, and establish a

rigorous framework for intraday risk management.

The mechanism is designed to support a broad family of Event Contracts whose primary purpose is

forecasting and risk transfer on objectively verifiable financial or economic questions. After establishing

the execution and risk framework, we describe applications that motivate the market design. These

include contracts that hedge relative underperformance of Bitcoin versus conventional benchmarks,

contracts that convert independent probability estimates into disciplined expected-value strategies with

fractional Kelly sizing, and contracts that translate high-accuracy probabilistic signals into conventional

linear trading positions. We also develop Bitcoin-mining applications, including difficulty-adjustment

hedges and block reward variance hedges, where settlement is tied to public protocol data and the

economic need is insurance for variance risk.

The platform-level vision is to treat Event Contracts as a standardized interface for expressing and

aggregating forward-looking beliefs, with Bitcoin-native settlement. The prices of Event Contracts pro-

vide a continuously updating forecast stream: a dense set of market-implied probabilities across assets,

horizons, and protocol variables that can be evaluated for calibration and reused for risk management

and decision support, functioning as a continuously updated “weather map” of financial and economic

uncertainty.

1

2 Background Information

A prediction market is a mechanism for aggregating dispersed information about an uncertain event

whose outcome will be objectively verifiable at a future time. The market offers state-contingent claims

(event contracts) and uses trading activity to produce an interpretable public forecast, typically repre-

sented by prices that approximate probabilities. This mechanism rests on a mathematical foundation

of scoring rules, which were originally developed to evaluate and reward accurate probabilistic forecasts

in domains like meteorology. Proper scoring rules create incentives for forecasters to report their true

beliefs—a principle that extends to market scoring rules, which adapt the concept to sequential trading

among many participants. In this setting, trade is a means to an informational end: the operator may

rationally subsidize participation and liquidity in order to obtain better forecasts, rather than to max-

imize revenue or balance the budget. To understand how these incentives are formally constructed, we

begin with the theory of proper scoring rules and their extension to market scoring rules.

2.1 From Probabilistic Forecasting to Market Scoring Rules

The conceptual origin of prediction markets lies in probabilistic forecasting. Long before electronic

markets, forecasters in domains such as meteorology were asked to report probabilities of events (e.g.,

precipitation), and these probability forecasts were evaluated using scoring rules. A scoring rule is a

contract that assigns a numerical score (or monetary payoff) to a reported distribution r = (r1, . . . , rm)

once the realized outcome is known. Early work by Brier introduced a quadratic scoring rule for verify-

ing probability forecasts in weather forecasting, and subsequent work formalized the logarithmic scoring

rule, with both families becoming standard tools for evaluating probabilistic predictions. Scoring rules

have since been widely used in weather forecasting and related forecast-verification settings [8, 16].

Formally, let Ω = {1, . . . ,m} denote mutually exclusive outcomes of an event. A scoring rule is a

collection of functions {si(·)}mi=1 where si(r) is the score paid if outcome i occurs. The rule is (strictly)

proper if a risk-neutral forecaster with true belief p maximizes expected score by reporting r = p [16].

Two canonical examples illustrate this framework. The quadratic rule (Brier score) is given by

si(r) = ai − b(1− ri)
2, b > 0,

where the forecaster receives maximum score when ri = 1 for the realized outcome i and is penalized

quadratically for deviations from perfect accuracy. The logarithmic rule takes the form

si(r) = ai + b log ri, b > 0,

which rewards accurate probability estimates through the natural logarithm and becomes arbitrarily

punitive as reported probabilities approach zero for the realized outcome. Properness matters because

it creates a disciplined incentive: under standard assumptions, the forecaster is rewarded for stating the

probability distribution they actually believe. A concrete illustration of the incentive logic is deferred

to Appendix B, which derives truth-telling under the quadratic (Brier) and logarithmic scores and

contrasts it with a simple non-proper rule.

A limitation of a one-shot scoring rule is that it elicits a forecast from one forecaster at one time. In

many applications, information arrives gradually and is distributed across many participants. What

is needed is a mechanism that allows many forecasters to contribute over time, while preserving the

incentive logic of proper scoring rules. This is where market scoring rules come into play.

2

2.2 Hanson’s Insight: The Logarithmic Market Scoring Rule

Hanson introduced market scoring rules (MSR) precisely to pool opinions from multiple forecasters

in a sequential, shared way [16]. An MSR maintains a current market distribution p ∈ ∆m. At any

time, a trader may replace it by a new distribution p′. If outcome i occurs, the trader receives the

incremental score improvement

Πi = si(p
′)− si(p).

This is an intuitive “pay for improvement” rule: a participant profits if they move the market forecast

in a direction that makes the realized outcome more consistent with their information [12].

A key operational feature is that the transfers telescope. Each trader effectively takes over responsibility

for the current score and replaces it with a new score. As a result, the market maker is responsible

only for the difference between the initial distribution p0 and the final distribution reached by the last

update. This yields a clean bounded-loss guarantee: the market maker’s worst-case loss is finite and

can be expressed directly in terms of the scoring rule [12].

While MSRs are conceptually clear, they do not initially resemble familiar “markets” because partici-

pants appear to be editing probability vectors rather than trading contracts. However, MSRs are equiv-

alent to a more intuitive implementation: a cost-function market maker that offers state-contingent

contracts [11, 12].

2.3 From the LMSR to Cost-Function Market Makers

To predict the outcome of some future event, a cost-function-based market maker offers some initial

quantity of Arrow-Debreu contracts, one for each possible (mutually exclusive) outcome. An Arrow-

Debreu contract pays 100 sats if the corresponding outcome is realized and 0 sats otherwise, and the

contracts are priced between 0 and 100 sats before resolution.

Let qi be the total quantity of contract i held by all traders combined, and let q = (q1 . . . qn) be

the vector of all quantities held. The market maker utilizes a cost function C(q) that records the

total amount of money traders have spent as a function of the total number of contracts held on each

outcome.

A trader who wants to buy any bundle of contracts such that the total number of outstanding contracts

changes from qold to qnew must pay C(qnew)− C(qold) sats to the market maker. Negative quantities

encode sell orders, and negative ”payments” encode sale proceeds earned by the trader.

The conventional LMSR cost function is written as:

C(q) = b(q) log

(∑
i

exp(qi/b(q))

)
where b(q) = b is an exogenously set constant. The instantaneous price of state i is given by the partial

derivative of the cost function along i. The expression for the price is therefore given by:

pi(q) =
∂C(q)

∂qi
=

exp (qi/b)∑
j exp (qj/b)

.

While elegant, the conventional LMSR has a significant practical limitation: the liquidity parameter b

is fixed. This means market depth remains constant regardless of trading volume or participation. A

3

market with $1,000 in total trading volume exhibits the same price sensitivity as one with $1,000,000
in volume.

This fixed-depth property creates two problems for large-scale information aggregation. First, as more

traders participate and the quantity of capital committed increases, individual trades continue to

have the same marginal price impact, potentially creating excessive volatility in high-volume markets.

Second, markets cannot naturally develop deeper liquidity as they mature and attract more capital,

limiting their ability to incorporate information from large, informed traders without dramatic price

movements.

What is needed is a mechanism that automatically adjusts market depth based on trading activity,

making price sensitivity responsive to the level of market participation. This motivates the development

of liquidity-sensitive variants of the LMSR.

2.4 A Liquidity Sensitive LMSR

If we let b(q) = α ·
∑

j qj then the LMSR cost function and price function become liquidity sensitive.

Sensitivity to liquidity is desirable because it squares intuitively with the way we would want markets

to function: small investments move prices less in thick (liquid) markets than in thin (illiquid) markets.

We can take the partial derivative of the cost function to derive the price function as follows:

pi(q) =
∂C(q)

∂qi

=
∂

∂qi
· b(q) · log

(∑
i

exp(qi/b(q))

)

=
∂

∂qi
· α ·

∑
j

qj · log

(∑
i

exp(qi/b(q))

)

= α · log

∑
j

exp(qj/b(q))

+

∑
j qj exp(qi/b(q))−

∑
j qj exp(qj/b(q))(∑

j qj

)
·
(∑

j exp(qj/b(q))
)

Therefore, the liquidity-sensitive LMSR cost and price functions are:

C(q) = b(q) log

(∑
i

exp(qi/b(q))

)

pi(q) = α · log

∑
j

exp(qj/b(q))

+

∑
j qj exp(qi/b(q))−

∑
j qj exp(qj/b(q))(∑

j qj

)
·
(∑

j exp(qj/b(q))
)

where b(q) = α ·
∑

j qj . The mechanism is designed to price contracts between 0 and 1 dollars, so we

must slightly alter the it to be able to price contracts and trades in a Bitcoin unit of account.

4

3 A Bitcoin-Denominated Liquidity Sensitive LMSR

For a binary market with outcomes Y and N (Yes/No), we define the market states as:

Q = [q0,q1,q2, . . . ,qn]

where each state qi = (yi, ni) represents the quantities of Yes and No contracts held by all traders at

state i.

If we let b(qi) = α ·(yi+ni) then the LMSR cost function and price function become liquidity sensitive.

Since we are denominating our trades in Bitcoin unit of account (where 1 BTC = 100,000,000 sats),

we modify the cost function to price contracts as follows:

C(yi, ni) = 100 · b(qi) · log
(
exp

(
yi

b(qi)

)
+ exp

(
ni

b(qi)

))
Since we are utilizing a path-independent market maker, the instantaneous price of outcome Y is given

by the partial derivative of the cost function along yi. We can take the partial derivative of the cost

function to derive the price function as follows:

pY (qi) =
∂C

∂yi

= 100 · α · log
(
exp

(
yi

b(qi)

)
+ exp

(
ni

b(qi)

))
+ 100 ·

exp
(

yi

b(qi)

)
(yi + ni) ·

(
exp

(
yi

b(qi)

)
+ exp

(
ni

b(qi)

))
By symmetry, the price of outcome N is given by the partial derivative of the cost function along ni.

The expression for the price is therefore given by:

pN (qi) =
∂C

∂ni

= 100 · α · log
(
exp

(
yi

b(qi)

)
+ exp

(
ni

b(qi)

))
+ 100 ·

exp
(

ni

b(qi)

)
(yi + ni) ·

(
exp

(
yi

b(qi)

)
+ exp

(
ni

b(qi)

))
Therefore, our revised Bitcoin-denominated liquidity-sensitive LMSR cost and price functions are:

C(qi) = 100 · b(qi) · log
(
exp

(
yi

b(qi)

)
+ exp

(
ni

b(qi)

))

pY (qi) = 100 · α · log
(
exp

(
yi

b(qi)

)
+ exp

(
ni

b(qi)

))
+ 100 ·

exp
(

yi

b(qi)

)
(yi + ni) ·

(
exp

(
yi

b(qi)

)
+ exp

(
ni

b(qi)

))
pN (qi) = 100 · α · log

(
exp

(
yi

b(qi)

)
+ exp

(
ni

b(qi)

))
+ 100 ·

exp
(

ni

b(qi)

)
(yi + ni) ·

(
exp

(
yi

b(qi)

)
+ exp

(
ni

b(qi)

))
where b(qi) = α · (yi + ni).

The pricing rule has bounded loss. Specifically, the market maker has worst-case loss equal to the

amount of the initial subsidy. For a two-outcome market, the market maker loses at most C(q0) sats

regardless of which outcome occurs or the final trading state.

5

3.1 Bounded Loss Analysis

For this revised price and cost function, we can derive the profit and loss of the market maker. The

cost of trader ti who is the i-th trade with the market maker is C(qi)−C(qi−1). The sum of the costs

of the trades are:

n∑
i=1

C(qi)− C(qi−1) = [C(q1)− C(q0)] + [C(q2)− C(q1)] + [C(q3)− C(q2)] + · · ·+ [C(qn)− C(qn−1)]

= C(q1)− C(q0) + C(q2)− C(q1) + C(q3)− C(q2) + · · ·+ C(qn)− C(qn−1)

= C(qn)− C(q0)

where all intermediate terms C(q1), C(q2), . . . , C(qn−1) cancel out in the telescoping sum.

The automated market maker must pay 100 · qi sats if outcome i occurs. Therefore, the net P&L of

the market maker if outcome i occurs, for an initial state q0 and final state qn is:

PnLi(q0,qn) = C(qn)− C(q0)− 100 · qi

The pricing rule has bounded loss. Specifically, the market maker has worst-case loss equal to the

amount of the initial subsidy: it loses at most C(q0) sats.

3.2 Transaction Fees and Path Dependence

Without fees, a cost-function market maker is path-independent. For any sequence of trades that

moves the state from q0 to qk, the total cash collected from traders is

k∑
i=1

(
C(qi)− C(qi−1)

)
= C(qk)− C(q0),

so the market maker’s outcome-contingent P&L depends only on the endpoints.

Now impose a proportional transaction fee with rate τ = 0.02 charged on each trade’s absolute cash

flow. For the ith trade, the trader’s payment to the market maker is

∆Ci := C(qi)− C(qi−1),

which may be positive (net buy) or negative (net sell). The fee collected on that trade is

ϕi := τ |∆Ci|.

Therefore total fee revenue over a discrete trading path P = {q0 → q1 → · · · → qk} is

Φ(P) = τ

k∑
i=1

|C(qi)− C(qi−1)|.

This is the source of path dependence. The endpoint term C(qk) − C(q0) is fixed, but
∑

i |∆Ci|
increases with back-and-forth trading.

A continuous formulation makes this explicit. Let γ : [0, T] → R2 be a trading path with γ(t) =

(y(t), n(t)) and let dq = (dy, dn). Since p = ∇C, we have

dC = ∇C(q) · dq.

6

Define the fee functional as total variation of C along γ:

Φ(γ) = τ

∫
γ

|dC| = τ

∫
γ

∣∣∇C(q) · dq
∣∣.

For a piecewise-linear path that interpolates the discrete states, this reduces to Φ(P) above.

With fees, the market maker’s P&L becomes

PnLω(P) =
(
C(qk)− C(q0)

)
− 100 qω,k +Φ(P), ω ∈ {Y,N},

where qk = (yk, nk) and qY,k = yk, qN,k = nk (or the corresponding net customer quantities if a virtual

seed state is used). Different paths with the same endpoints generally satisfy Φ(P1) ̸= Φ(P2), so higher

two-sided trading volume increases fee revenue regardless of the eventual outcome.

3.3 Market Maker Incentives and Optimal Market Design

The market maker is therefore incentivized to list markets that elicit high levels of disagreement from

a diverse set of traders, or list markets with inherently high volatility to induce winding trading paths.

The most profitable markets to provide liquidity for are markets that do not immediately reveal much

information by way of a market-consensus forecast.

Markets that are the most informative tend to have the highest consensus amongst traders, which

implies traders have purchased a sufficient quantity of contracts such that the price of yes (or no)

is near 100, and no other traders are willing to take a significant contrary position to the market.

Providing liquidity to prediction markets is optimal for topics that have high uncertainty, where people

have high conviction. Markets with low uncertainty imply traders have collectively found consensus,

and thus there is little opportunity to take profitable risk.

7

4 Optimal LS-LMSR Parameter Calibration

The liquidity-sensitive LMSR sets the liquidity parameter as a function of market activity,

b(q) = α

n∑
i=1

qi,

so market depth increases automatically as more contracts are outstanding [24].

The effect of α calibration on market maker profitability and price dynamics can be visualized through

profit landscapes across different terminal market states. Figures 1 and 2 demonstrate these rela-

tionships by plotting market maker profit and loss (excluding transaction fees) as a function of final

contract quantities.

Figure 1: The shaded regions show where the market maker’s worst-case revenue is greater than zero

in a two-outcome market with initial quantity vector (1, 1) and various values of alpha. The top black

ray represents py = 95 sats and the bottom black ray represents px = 95 sats.

Figure 2: The shaded regions show where the market maker’s worst-case revenue is greater than zero

in a two-outcome market with alpha = .03 and various initial quantity vectors. The top black ray

represents py = 95 sats and the bottom black ray represents px = 95 sats.

In these visualizations, the horizontal and vertical axes represent the final quantities of contracts qX and

8

qY respectively. The color intensity indicates market maker profitability: dark red regions represent

positive profit from liquidity provision, while blue and white regions indicate losses. The diagonal black

lines represent constant price levels (pY = 95 sats and pX = 95 sats), illustrating how price boundaries

shift with parameter changes.

Figure 1 demonstrates the critical role of α in determining market depth and price sensitivity. Lower

values of α (such as α = 0.01) create highly volatile price dynamics where small trades produce large

price movements, resulting in narrow profitable regions for the market maker. As α increases to 0.03

and 0.06, the profitable regions expand significantly, indicating that higher α values provide increased

market depth and stability. This occurs because larger α reduces the marginal price impact of individual

trades, making the market more resilient to order flow volatility.

Figure 2 illustrates how different initial quantity vectors q0 affect the profit landscape while holding

α = 0.05 constant. The symmetry and positioning of profitable regions shift based on the initial

market state, but the overall structure remains consistent. Markets initialized with balanced quantities

q0 = (1, 1) or q0 = (2, 2) exhibit symmetric profit patterns, while asymmetric initializations create

correspondingly skewed profit landscapes.

4.1 Default Parameters for Glimpse

Glimpse currently sets α = 0.111 and q0 = [5000, 5000] as the platform defaults. These values bal-

ances initial market depth with meaningful price responsiveness under typical trade sizes observed in

simulation.

Figure 3 presents the profit and loss landscape for Glimpse’s operational LS-LMSR implementation

using the platform’s standard parameter calibration: α = 0.111 and initial quantity vector q0 =

(5000, 5000). This configuration yields an initial subsidy of C(q0) = 576,246 sats, representing the

maximum potential loss exposure from liquidity provision.

The visualization demonstrates several critical operational characteristics. The green line delineates

the breakeven boundary where market maker profit and loss from liquidity provision equals zero,

formally defined by the condition PnLi(q0,qn) = 0. The dotted lines represent constant price contours

at pY = 95 sats and pN = 95 sats, corresponding to 95-sat contract prices that serve as natural

boundaries for high-conviction market states.

The color gradient reveals the fundamental profitability structure of Glimpse’s market making mecha-

nism. Red regions indicate positive profit from liquidity provision alone, occurring when the terminal

market state exhibits prices below the 95-sat threshold. This corresponds mathematically to market

configurations where one outcome maintains relatively low conviction, allowing the automated market

maker to benefit from the spread between collected premiums and required payouts.

9

Figure 3: Market maker profit and loss landscape for Glimpse’s standard LS-LMSR configuration with

α = 0.111 and q0 = (5000, 5000). The green line represents the breakeven boundary, dotted lines

indicate 95-sat price contours, and color intensity shows profitability from liquidity provision.

Conversely, blue regions represent scenarios where liquidity provision becomes unprofitable, occurring

when terminal prices exceed 95 sats for either outcome. In these high-conviction states, the market

maker faces adverse selection as informed traders have moved prices to reflect strong consensus. How-

ever, the bounded loss property ensures that deficits never exceed the initial subsidy C(q0), providing

a finite risk exposure regardless of trading outcomes.

The practical implications for market dynamics are significant. Any trading sequence can be conceptu-

alized as a stochastic path {q0 → q1 → · · · → qn} through the state space, representing the cumulative

effect of trader decisions over the market’s lifecycle. The profitability of liquidity provision depends

critically on where this random walk terminates relative to the price boundaries, with paths ending

in moderate-conviction regions (prices below 95 sats) yielding positive returns and paths converging

to high-conviction states (prices above 95 sats) resulting in controlled losses bounded by the initial

subsidy.

4.2 Normalization of Prices into Probability Distributions

In Glimpse, the economic terms of trade are defined by the LS–LMSR cost function. For a market

state q, a trade that moves the state from qold to qnew is charged (or paid, in the case of a sale) by

10

the cost difference

∆C := C(qnew)− C(qold).

Accordingly, contracts are not purchased by multiplying a quoted per-contract price by a quantity.

The executed cash flow is determined directly by the path-independent cost function evaluated at the

pre- and post-trade states. The instantaneous LS–LMSR price vector, obtained as the gradient of the

cost function, serves as a local marginal-price description of the curve at the current state, but it is

not itself the pricing rule used to compute the total cost of a discrete trade.

Because the liquidity-sensitive construction does not, in general, yield raw marginal-price components

that sum exactly to the 100-satoshi payout normalization, Glimpse separates (i) the trade economics

from (ii) the forecast signal presented to users. Let p̃i(q) := ∂C(q)/∂qi denote the raw LS–LMSR

marginal prices. Glimpse converts these raw values into a probability distribution by normalization,

Pi(q) :=
p̃i(q)∑m

k=1 p̃k(q)
,

m∑
i=1

Pi(q) = 1,

and reports the corresponding contract “odds” on a 0–100 scale via 100Pi(q). This normalization is a

representational layer designed to ensure that the platform outputs a coherent, interpretable probability

distribution that can be used as a forecasting signal. It does not modify the underlying cost function,

and therefore it does not alter the cash flow of any trade, which remains exactly C(qnew)− C(qold).

Under this architecture, it is not mathematically accurate to treat the liquidity parameter α as a client

commission. The parameter α enters through the liquidity function b(q) = α
∑

i qi and primarily

governs market depth and the responsiveness of the market state to incremental order flow. Lower α

increases early-stage price elasticity, meaning that small trades can move the state rapidly toward near-

certainty, concentrating favorable execution among early participants and reducing the opportunity for

later traders to obtain comparable odds. Higher α increases depth, requiring more cumulative liquidity

to move the market toward certainty, which distributes execution quality across a broader set of traders

and tends to improve the stability of the forecast signal as participation grows. These effects operate

through the curvature of C and the sensitivity of ∇C to changes in q, rather than through a fixed

per-trade charge.

The relevant economic analogue of a “spread” in a cost-function market maker is therefore dynamic

and state-dependent. For a discrete trade that increases outcome-i quantity by ∆qi > 0 (holding other

components fixed for exposition), the trader’s average execution price is

p̄i :=
C(qold +∆qi ei)− C(qold)

∆qi
,

which generally differs from the instantaneous marginal price p̃i(qold) because the trade traverses a

non-linear cost surface. Market depth calibration via α affects this execution-price impact, but it does

not constitute a separately assessed fee and it does not map one-to-one into platform revenue, which

depends on realized order flow and resolution outcomes.

11

5 Intraday Maximum Potential Payout and Open Interest

This section provides an explicit computation, at intraday checkpoints, of (i) open interest and (ii) the

operator’s maximum potential settlement outflow across all outstanding Event Contracts while markets

remain active.

5.1 Definitions at an intraday checkpoint

Consider a binary Event Contract with outcomes Y and N . At a checkpoint time t, let the outstanding

quantities be

q(t) = (y(t), n(t)), b(q(t)) = α
(
y(t) + n(t)

)
,

and let the Bitcoin-denominated LS-LMSR cost function be

C
(
y(t), n(t)

)
= 100 · b(q(t)) log

(
exp

(
y(t)

b(q(t))

)
+ exp

(
n(t)

b(q(t))

))
.

Open interest. We define contract open interest at time t as

OI(t) := y(t) + n(t),

and its satoshi-notional as 100 ·OI(t) sats.

Gross payout by realized outcome. If the market resolves based on the state at time t, the gross

payout owed to winning contract holders is

GY (t) := 100 y(t), GN (t) := 100n(t).

Operator cash-in and maximum potential settlement outflow. Let q0 be the market state at

listing time. The cumulative cash paid into the market maker by time t is

R(t) := C
(
q(t)

)
− C

(
q0

)
.

This formula ignores transaction fees, which makes the resulting bound conservative because fees

increase available reserves.

Conditional on an immediate resolution at time t, the operator’s net settlement outflow is

SY (t) := GY (t)−R(t), SN (t) := GN (t)−R(t).

We define the maximum potential payout (worst-case net settlement outflow) at checkpoint t as

M(t) := max{SY (t), SN (t)}.

For a platform with multiple simultaneously listed markets indexed by k, the corresponding aggregate

quantities are computed by summation, e.g.

Mtotal(t) :=
∑
k

Mk(t), OItotal(t) :=
∑
k

OIk(t).

12

5.2 Worked example with intraday checkpoints

Let the initial state be

q0 = (5000, 5000), α = 0.111, b(q) = α(y + n).

Trades occur in sequence. Alice buys 100 contracts on Y . Bob buys 300 contracts on N . Carol buys

500 contracts on Y . Thus the checkpoint states are:

q0 = (5000, 5000), q1 = (5100, 5000), q2 = (5100, 5300), q3 = (5600, 5300).

The corresponding b(qi) = α(yi + ni) values are

b(q0) = 1110.0, b(q1) = 1121.1, b(q2) = 1154.4, b(q3) = 1209.9.

Using the above cost function, the cost-function values (in sats) are approximately

C(q0) ≈ 576,939, C(q1) ≈ 582,820, C(q2) ≈ 600,449, C(q3) ≈ 629,791.

Therefore the amounts paid by each trader are:

Alice pays C(q1)− C(q0) ≈ 5,881,

Bob pays C(q2)− C(q1) ≈ 17,629,

Carol pays C(q3)− C(q2) ≈ 29,342.

The cumulative cash-in at the final checkpoint is

R(3) = C(q3)− C(q0) ≈ 52,852 sats.

5.2.1 Trader payoffs and conditional P&L at resolution

In Glimpse’s operational model, the initialization vector q0 = (y0, n0) is a virtual seed state used to

parameterize the LS-LMSR curve and to ensure continuous two-sided quoting from market open. It

does not represent contracts sold to customers. Accordingly, open interest and settlement exposure are

computed on net customer-purchased quantities:

∆yi := yi − y0, ∆ni := ni − n0.

At each checkpoint qi, we compute customer open interest OI(i), gross customer payouts if yes or no

is correct GY (i), GN (i), and net settlement outflows SY (i), SN (i) as follows:

OI(i) = ∆yi +∆ni, GY (i) = 100∆yi, GN (i) = 100∆ni,

SY (i) = GY (i)−
(
C(qi)− C(q0)

)
, SN (i) = GN (i)−

(
C(qi)− C(q0)

)
.

Here Sω(i) > 0 means the operator must pay out Sω(i) sats from the liquidity reserve provided by the

subsidy if outcome ω ∈ {Y,N} resolves immediately at checkpoint i. If Sω(i) < 0, the operator retains

−Sω(i) sats net of customer capital committed.

13

Checkpoint (y, n) OI R GY GN SY SN

t0 (open) (5000, 5000) 0 0 0 0 0 0

t1 (Alice) (5100, 5000) 100 5,881 10,000 0 4,119 −5,881

t2 (Bob) (5100, 5300) 400 23,510 10,000 30,000 −13,510 6,490

t3 (Carol) (5600, 5300) 900 52,852 60,000 30,000 7,148 −22,852

Each contract pays 100 sats if its outcome occurs and 0 otherwise.

Alice holds 100 Y -contracts and paid ≈ 5,881 sats. Her conditional P&L is:

ΠAlice
Y ≈ 100 · 100− 5,881 = 4,119, ΠAlice

N ≈ −5,881.

Bob holds 300 N -contracts and paid ≈ 17,629 sats. His conditional P&L is:

ΠBob
Y ≈ −17,629, ΠBob

N ≈ 100 · 300− 17,629 = 12,371.

Carol holds 500 Y -contracts and paid ≈ 29,342 sats. Her conditional P&L is:

ΠCarol
Y ≈ 100 · 500− 29,342 = 20,658, ΠCarol

N ≈ −29,342.

From the operator’s perspective, the conditional market maker P&L (excluding transaction fees) at

checkpoint t3 is computed on net customer quantities. Since ∆y3 = 5600 − 5000 = 600 and ∆n3 =

5300− 5000 = 300, we obtain:

PnLY (3) = R(3)− 100∆y3 ≈ 52,852− 60,000 = −7,148,

PnLN (3) = R(3)− 100∆n3 ≈ 52,852− 30,000 = 22,852.

5.3 Liquidity Headroom and the LS-LMSR Subsidy

We define the worst-case immediate-resolution deficit at checkpoint i as

D(i) := max{0, SY (i), SN (i)}.

This is the additional amount, beyond collected customer premiums, that must be funded from the

liquidity reserve if the event resolves immediately at checkpoint i.

At checkpoint t3, the table gives SY (3) = 7,148 and SN (3) = −22,852, hence

D(3) = max{0, 7,148, −22,852} = 7,148 sats.

Therefore, at t3 the market requires only 7,148 sats of reserve funding to guarantee settlement in the

worst case for this market configuration. The initial subsidy as calculated by C(q0) is the worst case

loss that the market maker can experience by providing liquidity in any prediction market, which is

why every market is pre-funded with C(q0) sats prior to listing.

14

6 Applications of Event Contracts

Event contracts convert uncertainty about a specified outcome into a fully collateralized claim with

objective settlement. A trader pays a premium in sats according to the cost function and receives a

fixed payoff if the event occurs, so the maximum potential loss is known at the time of trade (and

there is no margin or liquidation mechanism). The traded price is naturally interpreted as a market-

implied probability, so the instrument simultaneously provides a hedge, a return opportunity, and a

quantitative forecast. These properties are well matched to risks in Bitcoin-native finance that are not

handled cleanly by spot exposure or linear instruments.

We begin with the most direct hedging use-case: a Bitcoin holder who wishes to insure against un-

derperformance relative to a benchmark over a fixed horizon. This contract family is simple to define,

settles on public price data, and makes the hedge objective explicit. It also illustrates the general

pattern that recurs throughout this section. A payoff can be written to match the economic loss state,

and the market price can be read as a probability that supports transparent sizing and risk limits.

6.1 Hedging Bitcoin Underperformance with Event Contracts

Bitcoin holders face a practical risk that is not captured by simple spot volatility. The risk is relative

underperformance versus conventional benchmarks that anchor institutional portfolios and liabilities,

such as broad equity indices and commodity safe havens. From a portfolio-construction standpoint,

the relevant object is not the unconditional distribution of Bitcoin returns, but the joint distribution of

Bitcoin returns with other assets, especially their covariances [21]. Empirically, Bitcoin has exhibited

meaningful co-movement with technology-heavy equity indices in some samples, while its relationship

with commodities such as gold is often weaker or unstable across methods and horizons [1, 14]. This

motivates a hedging layer that pays explicitly when Bitcoin underperforms a selected benchmark over

a specified horizon.

Fix a horizon T (e.g. one month or one year) and let PX(0) and PX(T) denote the benchmark price at

trade time and resolution time, respectively, for X ∈ {BTC, SPX, IXIC,Gold,NVDA,TSLA}. Define

the log return

RX := log

(
PX(T)

PX(0)

)
.

For each benchmark A we define a binary relative-performance event contract

YA := {RA −RBTC ≥ 0}, NA := {RA −RBTC < 0}.

Each contract pays 100 sats if its outcome occurs and 0 otherwise. At market open, we assume the

market is seeded at a neutral prior 50–50, so the initial displayed odds are 50 sats on YA and 50 sats

on NA.

The hedging interpretation is direct. A Bitcoin holder who wishes to insure against relative underper-

formance buys YA contracts (“A beats BTC”) on several benchmarks A. When Bitcoin underperforms,

the hedge pays 100 sats per contract. When Bitcoin outperforms, the hedge expires worthless and the

premium is the hedging cost.

We now show a worked example illustrating (i) market listing and odds, (ii) expected-value arithmetic

under a 50–50 start, and (iii) how one can size positions using a fractional Kelly rule and then adjust

the allocations using mean–variance ideas.

15

6.1.1 Worked example: a diversified relative-performance hedge

Consider five yearly markets:

YGold : {RGold −RBTC ≥ 0}, YSPX : {RSPX −RBTC ≥ 0}, YIXIC : {RIXIC −RBTC ≥ 0},

YNVDA : {RNVDA −RBTC ≥ 0}, YTSLA : {RTSLA −RBTC ≥ 0}.

Assume each market starts at price 50 sats on Y and 50 sats on N . Let the hedger have a forecasting

model that outputs subjective probabilities

pGold = 0.56, pSPX = 0.53, pIXIC = 0.51, pNVDA = 0.49, pTSLA = 0.48.

These probabilities are illustrative. They can reflect a view that Bitcoin is comparatively likely to

underperform gold and broad equities over the next year, but less likely to underperform idiosyncratic

single-name equities. The empirical motivation for treating technology indices as more coupled to

Bitcoin than gold is consistent with evidence of a positive Bitcoin–Nasdaq relationship in some samples

and weak or insignificant gold effects in some specifications [1].

At price 50, a Y -contract has expected profit (in sats)

E[Π] = 100p− 50 = 100(p− 0.5),

and expected return on premium (ROI) is

ROI =
100p− 50

50
= 2p− 1.

Therefore:

ROIGold = 12%, ROISPX = 6%, ROIIXIC = 2%, ROINVDA = −2%, ROITSLA = −4%.

A hedger focused purely on expected value would avoid negative-ROI hedges. A hedger focused on

tail-risk reduction may still buy some negative-ROI insurance, but the framework makes the tradeoff

explicit.

For sizing, the simplest Kelly case is a event contract with cost of c sats that pays 100 sats if it wins

and 0 otherwise. Per unit premium c, the net win multiple is

b =
100− c

c
.

The full Kelly fraction of bankroll to allocate to this trade is the classical expression

f⋆ =
bp− (1− p)

b
,

and at c = 50 we have b = 1 so

f⋆ = 2p− 1.

Because full Kelly is typically too aggressive under model error and produces large drawdowns, practi-

tioners often use fractional Kelly [17, 7]. Let λ ∈ (0, 1) be the Kelly fraction (e.g. λ = 1/2). Then the

proposed allocation to each positive-edge market is

fi = λ(2pi − 1)+, (x)+ = max{x, 0}.

16

With λ = 1/2, we obtain

fGold = 0.06, fSPX = 0.03, fIXIC = 0.01,

and fNVDA = fTSLA = 0 under an EV-first rule.

This produces an implementable hedging budget. If the bankroll dedicated to hedging is W =

10,000,000 sats, then the premiums allocated are

WfGold = 600,000, WfSPX = 300,000, WfIXIC = 100,000 sats.

Assuming a trader can buy contracts with an average cost of 50 sats per contract (this would require

the prices to be below 50 sats prior to the trade being executed), the contract counts are

qGold =
600,000

50
= 12,000, qSPX = 6,000, qIXIC = 2,000.

If, for example, Bitcoin underperforms gold over the year, the hedge payout from the gold leg is

100qGold = 1,200,000 sats, and the net profit on that leg is 1,200,000− 600,000 = 600,000 sats.

Finally, diversification is not about holding many contracts. It is about reducing covariance among

payoffs [21]. Let Xi denote the random return of the ith hedge leg per unit premium. A mean–variance

adjustment chooses weights w to target a desired expected return while reducing variance:

max
w≥0

w⊤µ− γ

2
w⊤Σw,

∑
i

wi ≤ 1,

where µ and Σ are the mean vector and covariance matrix of the hedge-leg returns [21]. In practice,

one estimates Σ from historical data or from a risk model. The empirical point is that a gold-relative

hedge can behave differently from a Nasdaq-relative hedge because Bitcoin can be more coupled to

Nasdaq than to gold in some samples, so mixing both legs can reduce the chance that all hedges fail

in the same regime [1].

6.2 Generating ROI with Event Contracts

An event contract is a priced probability claim. If the market-implied probability for event Y is m (so

the contract trades at 100m sats), and a trader has an independent probability estimate p, then the

expected profit per contract is

E[Π] = 100p− 100m = 100(p−m).

Positive expected value therefore corresponds to p > m on a “Yes” contract and p < m on a “No”

contract. Profitability comes from identifying miscalibrated public odds and allocating capital with a

disciplined risk rule rather than taking blind risk on everything [7, 17].

A useful interpretation is to treat the market price as an aggregate prior and an individual model

as a private signal. Bill Benter emphasizes that a purely fundamental model can be biased relative

to the public odds, and that a practical path to profitability is to combine the model and the public

probability estimate rather than ignoring the public [7].

Position sizing follows the same Kelly logic as above. For a cost of c sats, net win multiple b =

(100− c)/c, and win probability p, the full Kelly fraction is

f⋆ =
bp− (1− p)

b
.

17

Because estimation error and drawdown constraints matter, fractional Kelly is standard in practice

[17, 7]. If f = λf⋆ with λ ∈ (0, 1), then a trader can bound risk while retaining a large fraction of the

long-run log-growth objective.

A simple subsidized-start example clarifies the economics. Suppose a market is listed at a neutral seed

m = 0.5 (price c = 50), and your model estimates p = 0.58. Then E[Π] = 100(0.58− 0.5) = 8 sats per

contract, so the expected ROI is 8/50 = 16%. At c = 50, the full Kelly fraction is f⋆ = 2p− 1 = 0.16,

and a conservative fractional Kelly at λ = 1/2 allocates 8% of bankroll. This is the basic route by which

a forecasting model, if genuinely informative, can be converted into positive expected value without

uncontrolled leverage.

6.3 Simple Trading Strategies with High Accuracy Forecasts

Event contracts also provide a bridge from probabilistic forecasts to conventional trading strategies in

linear or leveraged instruments. Consider a daily directional event on an index, such as

Y := {S&P 500 closes up on date t}, N := {S&P 500 closes down (or non-up) on t}.

If the market-implied probability is m and your forecast probability is p, then the event contract itself

has expected profit 100(p−m) sats as above.

To translate this signal into a futures or perpetuals position, model the one-day index return as taking

two representative values, +r in the up state and −r in the down state. Then a forecast p implies an

expected one-day return

µ = p · r + (1− p)(−r) = (2p− 1)r.

If you trade a linear instrument with daily return approximately µ and daily variance approximately

σ2, a standard continuous-time Kelly approximation suggests sizing proportional to µ/σ2. In practice,

volatility is time-varying and heavy-tailed in crypto and related markets, so volatility forecasting and

crash risk matter for any leverage-based strategy [22, 20]. This is exactly why event contracts are

operationally attractive: they bound downside to the premium and remove liquidation dynamics.

Beyond a single directional trade, a probability stream supports several simple strategy templates. A

basic implementation is a threshold rule: take risk only when the edge is large enough to plausibly

clear spreads, fees, and slippage, e.g. trade only if |p − m| ≥ δ for a calibrated δ > 0. Because the

forecast updates continuously, the same rule naturally implies rebalancing: exposures are increased

when p moves further from m and reduced when the signal weakens, subject to hard leverage caps and

drawdown limits.

Forecasting is most valuable when it is calibrated. A model that outputs probabilities should be

evaluated on calibration and forecast error, not only hit rate. The platform-level point is that event

contracts produce a standardized object for evaluation: each market is a well-defined question with an

objectively verifiable settlement rule. This makes it feasible to measure whether a strategy produces

persistent edge, and to adjust capital allocation rules over time using disciplined fractional Kelly sizing

rather than ad hoc leverage [17, 7].

6.4 Event Contracts for Bitcoin Mining

Bitcoin mining is a probabilistic, winner-take-all contest. A miner invests computational work and

wins the right to author the next block with probability proportional to their share of global hashrate.

18

Inter-block times are well modeled as exponential, so the number of blocks found over a fixed horizon

is well approximated by a Poisson process [27, 28, 13]. The protocol adjusts the difficulty every 2016

blocks so that the average inter-block interval remains approximately ten minutes [27].

6.4.1 Mining variance and the economic role of pools

Solo mining inherits the variance of a Poisson arrival process. With hashrate h, difficulty D, block

reward B, and horizon t, the expected block count is λ = ht/232D, and the variance of blocks found is

also λ [28]. This implies extreme payout dispersion for small miners, including long droughts in which

no block reward is earned [28, 29].

Mining pools exist to reduce this variance by paying miners against submitted shares. Pools implement

reward-sharing schemes such as Full-Pay-Per-Share (FPPS), which minimizes miner variance but shifts

risk to the pool operator, and Pay-Per-Last-N -Shares (PPLNS), which reduces variance but still exposes

miners to pool luck [29, 28, 25]. Empirically, pooling pressure has contributed to concentrated mining

power, and even within large pools a small number of actors can receive a majority of payouts [27].

This concentration matters because Bitcoin’s neutrality and censorship resistance rely on the absence

of controlling coalitions in block production [25, 19].

6.4.2 Mining pool game theory and malicious incentives

Pooling changes the strategic landscape. Competition among pools has been linked to adversarial

behavior, including denial-of-service and block-withholding-style attacks [27]. In particular, block

withholding can be profitable at the pool level via infiltration, creating a prisoner’s-dilemma structure

where mutual attack can be an equilibrium even though both sides would be better off without attack-

ing. These dynamics can push miners away from open pools and toward closed pools and coalitions

[15].

Within pools, reward schemes can also create internal incentive problems. In PPLNS pools, miners

may benefit by delaying share reports, and incentive compatibility depends on the relative power of

the largest miner [32]. More broadly, models that treat mining as a setting with a small number of

dominant players and many small players imply structural incentives to merge into larger entities,

increasing the value-per-unit of resources as coalitions grow [19].

These forces jointly motivate a design goal. Variance must be reducible without increasing the payoff

to consolidation. A market-based hedge that is available to small miners and small pools can relax the

variance pressure that otherwise favors large pools [25].

6.4.3 Miner Hedging with LS–LMSR Event Contracts

This subsection shows how Bitcoin-native event contracts can be used to hedge two mining risks

that matter operationally. The first is the discrete revenue shock induced by a positive difficulty

adjustment. The second is per-block payout variance, which is intrinsic to the winner-take-all nature

of mining and is a primary driver of pooling pressure. Mining concentration is empirically observable

and is economically important because decentralization supports Bitcoin’s neutrality and censorship

resistance [27, 19]. Moreover, mining pools face strategic incentives that can be socially harmful,

including block-withholding incentives that form a prisoner’s-dilemma structure among pools [15] and

inter-pool attack dynamics that can affect long-run viability [18]. A hedging layer that reduces variance

19

without requiring miners to migrate to the largest pools can therefore be interpreted as decentralization-

supporting infrastructure [25].

Throughout, contracts pay 100 sats if their outcome is realized and 0 otherwise. Trades are executed by

a liquidity-sensitive LMSR cost function with a virtual seed state. In addition, we assume an explicit

execution subsidy that discounts cost-function charges by a factor ρ ∈ (0, 1). If a trader moves the

state from qold to qnew, the raw cost-function charge is

∆C := C(qnew)− C(qold),

and the trader pays ρ∆C. We take ρ = 0.5 in the worked examples below. The 100-sat resolution

payouts are unchanged, so ρ is a direct liquidity subsidy.

6.4.4 Market A: “Will the next difficulty adjustment go up?”

Bitcoin retargets mining difficulty every 2016 blocks to stabilize expected block time. A positive

adjustment reduces expected sats earned per unit of hashrate in the subsequent epoch, holding the fee

environment fixed. This creates a discrete, objectively verifiable revenue shock and therefore a natural

hedging target.

We define the binary event contract

Y := {the next difficulty adjustment is positive},
N := {the next difficulty adjustment is non-positive}.

Let the LS–LMSR state be q = (y, n). We use the Bitcoin-denominated liquidity-sensitive cost function

b(q) = α(y + n), C(y, n) = 100 b(q) log

(
exp

(
y

b(q)

)
+ exp

(
n

b(q)

))
.

A trade that moves the market from qold to qnew has raw charge ∆C, and the subsidized cash paid is

ρ∆C.

To size a hedge, let R0 denote the miner’s expected sats revenue over the next epoch under baseline

difficulty. Let δ > 0 denote a modeled conditional difficulty increase given that Y occurs. A simple

revenue-impact approximation is

L ≈ R0

(
1− 1

1 + δ

)
= R0

δ

1 + δ
,

which is the expected revenue shortfall the miner wishes to offset. If the miner buys ∆y contracts on

Y , then the gross payoff upon Y is 100∆y sats. Under a subsidy factor ρ, the net cash received in the

Y state is

100∆y − ρ∆C.

We choose ∆y so that this net amount approximately matches L.

6.4.5 Worked example A: difficulty hedge with a large seed state

We initialize the market at a large initial subsidy to support large miner flows with modest slippage,

q0 = (500,000; 500,000), α = 0.111, ρ = 0.5.

20

Then the initial subsidy is

C(q0) ≈ 57,693,934 sats.

A miner buys ∆y = 100,000 contracts on Y , moving the state to

q1 = (600,000; 500,000).

The raw cost-function charge is

∆C = C(q1)− C(q0) ≈ 6,765,750 sats,

so the premium paid is

ρ∆C ≈ 3,382,875 sats.

If Y occurs, the hedge pays 100∆y = 10,000,000 sats, hence net hedge cash in the Y state is

10,000,000− 3,382,875 = 6,617,125 sats.

If N occurs, the hedge pays 0 and the miner’s loss is the premium 3,382,875 sats.

To connect the hedge to mining economics, suppose the miner’s expected epoch revenue is R0 = 1 BTC

= 100,000,000 sats and conditional on Y the miner models a difficulty increase of δ ≈ 7.1%. Then the

modeled revenue shortfall is

L ≈ 100,000,000 · 0.071
1.071

= 6, 629, 318.39 ≈ 6.6× 106 sats,

which is approximately offset by the computed hedge payoff 6,617,125 sats.

6.4.6 Market B: “Which pool mines the next block?”

Block discovery is a winner-take-all process with high payout variance when the win probability is

small. Variance reduction is a principal reason miners join pools. However, pooling also concentrates

block production, and concentration is empirically visible in recent hashrate-share data. Concentration

matters because mining coalitions can create censorship and neutrality risks [19, 27]. Mining pools can

also face strategic adversarial incentives, including block-withholding-style dynamics that can be ratio-

nal in equilibrium [15]. A hedging mechanism that reduces the cost of variance for smaller participants

can therefore reduce the structural pressure toward ever-larger pools [25].

The natural informational question is multi-outcome:

Ω = {Foundry, AntPool, ViaBTC, F2Pool, SpiderPool, MARA, . . . , Other},

where the realized outcome is the identity of the pool that mines the next block. A multi-outcome

LS–LMSR represents this as a single probability vector over pools. Let q = (q1, . . . , qm) be the state.

We define

b(q) = α

m∑
j=1

qj , C(q) = 100 b(q) log

 m∑
j=1

exp

(
qj
b(q)

) .

For hedging, miners typically need a complement payoff, i.e., a claim that pays when their pool does

not find the next block. This is the “bet against your own pool” structure that turns an all-or-nothing

21

payout into a smoother cash flow and can reduce pooling pressure [25]. Operationally, the cleanest

interface is therefore an event contract per major pool i:

Yi := {pool i mines the next block}, Ni := {pool i does not mine the next block}.

These binaries can be derived from the multi-outcome market as a quoting convenience, but the eco-

nomics are identical: they pay exactly in the drought state that causes miner stress.

6.4.7 Worked Example B: Hedging Hashrate Against Block Reward Variance

We consider a single pool-specific binary market, e.g. Foundry:

Y := {Foundry mines the next block}, N := {Foundry does not mine the next block}.

We use the same large-seed configuration as above,

q0 = (500,000, 500,000), α = 0.111, ρ = 0.5.

Suppose the miner’s incremental payout if Foundry mines the next block is b = 1,000,000 sats, and 0

otherwise for that block. The miner purchases ∆n = 14,212 contracts on N , moving to

q1 = (500,000, 514,212).

The raw cost-function charge is

∆C = C(q1)− C(q0) ≈ 842,358 sats,

so the subsidized premium paid is

ρ∆C ≈ 421,179 sats.

If N occurs, the hedge pays 100∆n = 1,421,200 sats, hence net hedge cash is

1,421,200− 421,179 ≈ 1,000,021 sats,

which approximately matches the target b. If Y occurs, the hedge pays 0 and the miner loses the

premium 421,179 sats.

Outcome Mining payout Hedge net payout Total

Foundry mines (Y) 1,000,000 −421,179 578,821

Foundry does not mine (N) 0 +1,000,021 1,000,021

This is the basic variance-hedging geometry, and the prediction markets odds would be continuously

recalibrated in real-time. However, it shows if the odds have a significant deviation from the true likeli-

hood (Foundry has approximately 20-30% of global hashrate, while we priced this initial Event Contract

at the platform default of 50% probability) then the markets can be highly profitable for hedgers or

speculators alike. The opportunity for profit therefore comes when the market-based probability is

significantly different from the true probability.

Mining is an all-or-nothing contest at the block level, and the hedge is a complementary all-or-nothing

payoff that triggers precisely when the block is not won. With suitable depth and an explicit execution

subsidy, the miner can transform a highly volatile per-block revenue stream into a controlled cash-flow

profile without requiring migration to the largest pools [25].

22

6.4.8 How Hedging Hashrate Supports Mining Decentralization

Bitcoin mining is designed as a probabilistic winner-take-all contest [13]. Even when hashrate shares

are stable, the realized winner of the next block is uncertain, and Bitcoin miner revenue arrives in

lumpy, path-dependent bursts rather than as a smooth cash flow. This variance is not an accident. It

is a direct implication of Bitcoin’s permissionless security model, where block production is allocated by

open competition rather than by a trusted scheduler [23]. In practice, however, variance creates strong

pressure toward pooling and toward payout schemes that smooth miner income [28, 29]. Empirically,

mining power is concentrated in a small number of pools, and concentration can also arise within

pools [27]. These dynamics matter because permissionless systems rely on the absence of controlling

coalitions at the settlement layer, and coalition incentives can naturally push toward mergers and

centralization [19].

Mining outcomes also remain intrinsically uncertain at decision-relevant horizons. For most pools,

“will this pool mine the next block?” has probability far from 0 or 1, and does not converge to

certainty prior to resolution. The same is true of short-horizon mining risks that matter operationally,

such as adverse luck over a window and discrete protocol shocks like a positive difficulty adjustment.

Persistent uncertainty sustains two-sided trading demand and repeated settlement cycles, which makes

these mining-hedge markets economically attractive to run at scale. In this sense, mining variance is

not only a risk for miners. The variance and uncertainty of the system itself is a structural source of

market-making profitability for prediction market liquidity provision.

A profitable hedging venue can also generate a positive side effect for the Bitcoin ecosystem by func-

tioning as a variance-insurance layer. Pool selection is partly an insurance decision. PPLNS-style pools

expose miners to more luck variance, while FPPS-style pools reduce miner variance by shifting risk

onto the operator [28, 29, 32]. This tends to favor larger pools and well-capitalized operators, increas-

ing concentration pressure [27, 19]. Mining-hedge markets target the root economic driver. If miners

can buy protection that pays in “drought” states, smaller PPLNS pools can attract miners without

requiring them to bear intolerable variance. If small FPPS operators can hedge negative luck relative

to expected block share, they can offer stable payouts with less balance-sheet strain [25]. By lowering

the variance premium that otherwise pushes participants toward the largest pools, hedging markets

enlarge the feasible set of decentralized pooling equilibria and can reduce concentration pressure in

practice [27, 19].

This decentralization side effect is significant because Bitcoin’s monetary value proposition depends

on credible neutrality and censorship resistance. Bitcoin was proposed as a peer-to-peer electronic

cash system precisely to enable value transfer without reliance on trusted intermediaries [23]. Bitcoin’s

distinctive role is as neutral monetary infrastructure ensures that it is harder to capture, censor, or

selectively exclude than institutionally permissioned payment systems [5, 3]. On this view, neutrality is

not a branding choice. It is an institutional property grounded in the absence of concentrated control

points in the settlement process. Because mining determines transaction inclusion and final settle-

ment, concentration in mining can become a practical chokepoint, weakening the system’s neutrality.

Accordingly, any mechanism that reduces structural incentives toward mining centralization supports

the credibility of Bitcoin as neutral money, and thereby supports the long-run value proposition of

Bitcoin-native financial infrastructure.

23

7 Conclusion

We have described a Bitcoin-native prediction market that uses an automated market maker to convert

dispersed, time-varying beliefs into a continuously updated public forecast on clearly stated, objectively

verifiable financial events. The mechanism is engineered around two design requirements. First, trade

execution is determined by a cost-function rule that provides a clear, auditable accounting of cash-

in versus contingent payout, together with a finite and explicitly controlled worst-case exposure set

by the initial liquidity subsidy. Second, market depth adapts to participation so that early markets

remain responsive while mature markets become progressively more stable, improving execution quality

and reducing volatility as open interest grows. These properties make the system suitable for fully

collateralized, Bitcoin-denominated event contracts that can be operated with transparent risk limits.

The broader claim is that the platform’s primary product is not trade flow but the forecast itself: a

structured probability signal that can be reused for decision-making across time horizons and asset

classes. By separating execution economics from the probability representation shown to users, the

design preserves rigorous settlement guarantees while still producing an interpretable “weather map”

of financial uncertainty. What remains is empirical validation and operational hardening: calibrating

parameters against real order flow, measuring forecast calibration and error under realistic participa-

tion, and extending the same settlement-and-risk framework to more diverse market mechanisms while

maintaining the same clarity of guarantees.

24

A Bitcoin as a High-Value Target for Forecasting

Bitcoin is a digital bearer asset native to a permissionless payment network [23]. It is neither an

equity claim nor a contractual right against an issuer. Accordingly, it has no management team, no

cash-flow schedule, no dilution events, and no privileged disclosure cycle. Its market price is therefore

best interpreted as a market-clearing statistic for a globally traded monetary commodity.

A.1 Bitcoin as neutral monetary infrastructure

Money is a functional kind, and a monetary asset is evaluated by the extent to which it can serve, at

least locally, as a means of exchange, a store of value, and a unit of account [5, 23]. Bitcoin partially

realizes the digital cash ideal by combining final settlement on a public ledger with payment-layer

constructions that support high-frequency exchange at low marginal cost while preserving ultimate

settlement on the base layer [6]. In this sense, Bitcoin can be treated as neutral monetary infrastructure:

it supports exchange without an issuer narrative, and it does so on rails designed to be broadly accessible

(permissionless) rather than institutionally gatekept [5, 3, 4].1 Even when Bitcoin is not the dominant

unit of account for the broader economy, it remains a coherent unit of account within Bitcoin-native

systems, that is, in applications whose liabilities, collateral, and settlement are natively denominated

in bitcoin units (sats) [2].

A.2 Why Bitcoin is a natural focus for prediction-market forecasting

Prediction markets are marketplaces for information in which trades aggregate dispersed beliefs into

a publicly observable price. For such markets, the settlement asset should be digitally transferable,

operationally neutral with respect to jurisdictional payment intermediaries, and natively compatible

with global, continuous online participation. Bitcoin is well positioned on these criteria insofar as

it is designed to transfer value and can support exchange without reliance on an issuing firm or a

centrally administered payments operator [23, 3, 2]. This provides a principled justification for Bitcoin-

native event contracts: the same object that functions as digital cash for internet commerce can also

function as the settlement medium for information commerce. On the mechanism side, cost-function

market makers and market scoring rules provide a standard way to transmute sequential trading into

probability outputs [16, 11, 12]. Liquidity-sensitive automated market makers further permit market

depth to adapt to growing participation [24].

Bitcoin is also unusually well suited as a forecasting target. Because it is globally traded and information

arrives continuously, there is no privileged disclosure cycle to anchor belief updates. Because it is a

bearer-like asset, its market microstructure is less constrained by issuer actions such as buybacks,

dividends, or guidance. For a forecasting business, these features concentrate the forecasting problem

1Bitcoin (the protocol and bearer asset) is conceptually distinct from the regulated intermediaries that custody it,

transmit it, or broker access to it. The protocol does not itself implement identity, suitability, reversibility, dispute

resolution, or transaction-monitoring functions. Accordingly, legal duties and operational risks arise primarily at the

application interface where a firm intermediates customer access to the network, including activities commonly regulated

as custody, money transmission, exchange, and settlement. For this reason, Glimpse Ltd. treats Bitcoin-native settlement

as technologically permissionless externally but governed internally: to the extent we hold or transfer Bitcoin on behalf

of customers, we apply controls consistent with applicable financial crime, safeguarding, and market-conduct expecta-

tions, including customer due diligence, transaction monitoring, sanctions screening, and governance over custody and

settlement processes.

25

on the dynamics of collective belief under uncertainty rather than on idiosyncratic corporate actions. In

short, Bitcoin generates a steady stream of verifiable, decision-relevant questions with clean settlement

rules, which is exactly the substrate prediction markets require.

A.3 Long-horizon structure and descriptive power-law heuristics

A recurring empirical claim is that Bitcoin’s long-run price evolution is approximately consistent with

a power-law relationship in time (equivalently, a linear relationship in log-log space),

P (t) = Atα, logP (t) = logA+ α log t,

often motivated by network-growth dynamics and diffusion-style adoption effects [30, 9, 26, 31]. We

treat these external frameworks as heuristic motivation rather than as proof. Our use of this functional

form is descriptive and intended only to characterize long-horizon structure in the realized series.

Figure 4: Illustrative power-law framing from prior work (included for intuition; not relied on as proof).

Using N = 5,499 observations, we fit the one-factor model

log(indext) = β0 + β1 log(timet) + εt,

and obtain R2 = 0.963 with β1 = 5.8065 (95% CI: [5.777, 5.837]) and β0 = −39.0236. This fit indicates

that a simple log-log specification explains a large fraction (over 95%) of long-horizon variance in

the historical series. The regression is descriptive and does not imply future adherence to the same

relationship, particularly under structural regime change.

26

Figure 5: Independent log-log fit and confidence bands (illustrative). Black: observed series. Blue:

fitted log-log trend with confidence intervals.

A.4 Short-Horizon Uncertainty and Why Probabilities Matter

Long-horizon structure in price levels can coexist with substantial short-horizon uncertainty in returns.

A log–log regression concerns the slow-moving component of logP (t) as a function of time and can

therefore achieve high in-sample R2 even when short-run returns remain difficult to forecast. This is

not a contradiction. It reflects the separation between smooth long-run movements in the price level

and highly variable day-to-day and week-to-week changes.

Over decision-relevant horizons, Bitcoin returns are empirically heavy-tailed, meaning extreme moves

occur more often than a Gaussian benchmark would predict. Volatility is also clustered, meaning large

moves tend to be followed by large moves, while quiet periods tend to persist [10]. For this reason,

empirical studies frequently model Bitcoin risk using conditional-variance frameworks such as GARCH

and multivariate extensions, which formalize the practical point that the current risk level depends on

recent market turbulence and can vary substantially over time [10, 22].

Crash episodes are particularly salient because they are abrupt relative to typical movements in the un-

derlying trend and because they are economically consequential. This motivates empirical approaches

that treat crashes and large drawdowns as low-frequency but decision-relevant events rather than as

negligible residual noise [20]. More broadly, short-horizon uncertainty can shift with macro conditions

and cross-asset linkages. In particular, empirical work has documented meaningful relationships be-

tween Bitcoin and technology equity indices and other macro-financial indicators over some samples,

while other traditional hedges such as gold may be weaker or unstable depending on specification and

horizon [1, 14].

These facts motivate the forecasting product that event contracts provide. When risk is high and

unstable, market participants often need an interpretable statement of which outcomes are likely over

a fixed horizon, rather than an undifferentiated exposure to the spot asset. Event contracts implement

27

this translation by converting a price question into a proposition with a clear settlement rule, such

as “BTC is above X by date T ,” “BTC experiences a drawdown of at least d% over horizon T ,”

or “BTC outperforms benchmark B over horizon T .” Trading then produces a market price that

can be read as a market-implied probability, which is a practically usable forecast to the extent that

historical calibration and hit rates are strong. Because contracts can be defined on thresholds, relative

performance, and crash-like events, they can also provide targeted hedges that address specific adverse

scenarios without requiring continuous rebalancing in the underlying asset [22, 20, 1].

A.5 Bitcoin Mining, Network Difficulty, and Block Reward Variance

Bitcoin mining is a large, globally distributed industry with cash flows that are intrinsically stochastic

and strongly regime-dependent. At the protocol level, block production is a race in which the probabil-

ity of winning the next block is approximately proportional to a miner’s share of global hashrate. Over

intervals where the global hashrate and difficulty are approximately constant, the time to the next

block is well modeled as exponential and block arrivals are well approximated by a Poisson process.

The resulting payout stream is therefore lumpy even when a miner’s hashrate share is stable.

This uncertainty caused by variance inherient to the Bitcoin protocol creates real business risks for

Bitcoin miners. For a miner with hashrate h facing network difficulty D, the expected number of

blocks found over a horizon t scales linearly in ht/D, and the variance in blocks found is of the same

order as the mean. Small and mid-sized miners therefore face large relative dispersion, including long

droughts with zero block rewards, which directly motivates variance-reducing institutional structures

such as mining pools and share-based payout schemes. In classical analyses of pooled mining, these

schemes can be viewed as contracts that trade off immediacy, operator balance-sheet risk, and the

variance borne by individual miners, and the details of reward design matter for both fairness and

attack surface.

The difficulty adjustment introduces an additional, discrete source of uncertainty that is economically

first-order for operational planning. Bitcoin retargets difficulty every 2016 blocks to stabilize expected

block time near ten minutes. The retarget rule is a feedback mechanism that depends on realized block

times over the previous epoch. Consequently, when global hashrate grows rapidly within an epoch,

blocks tend to arrive faster than the ten-minute target during that epoch, and the subsequent difficulty

adjustment tends to be positive. A positive adjustment reduces expected bitcoin earned per unit of

hashrate in the next epoch, holding fees and other conditions fixed. This creates a predictable type

of shock, but an uncertain magnitude and timing, because the adjustment is triggered by a random

block-arrival process and because the global hashrate is itself time-varying.

Block rewards also contain a second source of variance beyond win probability. The per-block miner

revenue is the sum of the protocol subsidy and transaction fees. While the subsidy is deterministic

over a halving epoch, transaction fees are time-varying and can be materially larger or smaller across

blocks. As fees become a larger share of miner revenue, the variability of realized per-block revenue

increases, and reward-sharing schemes that are not carefully aligned to the timing of fee variability can

become economically distortive.

These features jointly make mining a natural forecasting target for Bitcoin-native event contracts.

Unlike generic price forecasting, mining variables are operational primitives. They map directly into

balance-sheet and cash-flow risk, they are observed on-chain or from widely monitored network statis-

28

tics, and they admit objective settlement rules. The contract designs below illustrate how difficulty

dynamics, block-arrival variance, and fee regimes can be translated into probability forecasts that

miners and other Bitcoin participants can use for planning and hedging.

Difficulty and hashrate event contracts target the protocol variable that turns global competition into

miner unit economics. The basic forecasting question is concrete and settlement-clean: ”Will the

next difficulty adjustment be positive, and will it exceed a threshold δ”? These questions matter

because difficulty directly determines how many sats some given amount of hashrate can be expected

to earn in the next epoch, holding the fee environment fixed. A positive adjustment therefore induces

a discrete revenue shock that miners must absorb immediately in operating margins. The dominant

driver of miner profitability is still the Bitcoin price, because hashprice is increasing in BTC price and

decreasing in difficulty, but difficulty-forecast markets isolate the protocol component of hashprice risk.

They allow a miner to hedge the revenue impact of rising network competition even when the BTC

price path is uncertain.

Block-arrival and luck event contracts target the intrinsic variance of winner-take-all block production.

The operational question is again explicit: ”Will a given pool mine fewer than k blocks over the next

T blocks”? A complementary variant that is convenient for interface and frequent settlement is: will

pool i fail to mine the next block? These questions matter because realized block counts over short

horizons can deviate sharply from expectation even when hashrate share is stable. For miners and

pool operators, under-production over a payroll, hosting, or debt-service window is a solvency and

liquidity problem. A contract that pays precisely in the under-production state functions as variance

insurance against cash-flow droughts. This has broader system relevance because variance pressure

is a primary driver of pooling and of concentration dynamics. When variance is expensive to bear,

miners rationally migrate toward the largest pools and the most capitalized payout schemes. A liquid

hedging layer relaxes that pressure by allowing smaller participants to buy protection rather than to

consolidate.

Fee-regime event contracts target the part of miner revenue and user cost that is most visible to the rest

of the ecosystem. The forecasting question can be stated in a way that is directly useful for operations:

”Will the (average) transaction fees per block exceed f BTC in block n (or between blocks H and

H + n)”? Tail formulations are also natural, such as whether at least one block in the next n blocks

contains total fees above a stress threshold fmax. These questions matter to miners because fees are an

increasingly important component of per-block revenue and a major source of variance conditional on

winning a block. They matter to Lightning node operators because high-fee regimes raise the cost of

channel opens, closes, and rebalancing, and can force changes in liquidity management. They matter

to exchanges and payment processors because the expected probability of a high-fee regime determines

whether to accelerate batching, delay non-urgent withdrawals, or adopt fee-smoothing policies. They

matter to ordinary users because fees determine whether on-chain usage is economical on a given

horizon. By turning near-term congestion and volatility conditions into market-implied probabilities

with clean settlement rules, fee-regime contracts provide an interpretable forecast that can be acted on

directly.

Taken together, these mining-adjacent forecasting targets decompose the economic uncertainty faced

by Bitcoin participants into separable components. Price markets primarily address directional BTC

exposure. Difficulty markets address protocol competition risk that moves hashprice mechanically.

Block-arrival markets address payout timing risk that cannot be diversified away by small participants.

29

Fee-regime markets address the volatility of the user-cost and security-budget channel that links miners

and transactors. The economic data of the Bitcoin network is a natural domain in which event contracts

function as variance insurance rather than as generic speculation.

Mining event contracts also matter beyond miner balance sheets. Mining is increasingly entangled

with energy markets because miners are unusually flexible electricity consumers. Miners can curtail

consumption quickly, can locate near stranded supply, and can monetize curtailed renewable generation

and other wasted energy. In grids with increasing shares of variable renewables, this flexibility is

economically valuable. Mining therefore sits at the intersection of two volatile systems. Bitcoin-

denominated revenue is volatile, and power prices and curtailment regimes can be volatile. Forecasting

instruments that turn these uncertainties into tradeable probabilities can reduce the variance premium

faced by miners and by capital providers to miners.

Mining markets are tightly coupled to the broader Bitcoin financial system through a real economic

feedback loop. When mining is persistently unprofitable for a marginal set of operators, shutdowns

reduce the effective hashrate, and the next difficulty adjustment partially restores expected profitability

per unit of hashrate. This mechanism does not create a hard price floor for Bitcoin, but it does create

a stabilizing channel for miner economics. Prediction markets that forecast difficulty, block reward

variance, and future fees make this legible. They also create new derivative instruments for an industry

whose core risk is variance rather than mere directional exposure.

A.6 Summary

Bitcoin is a compelling focus for forecasting because it is (i) a global monetary commodity whose

price is primarily a market signal rather than an issuer narrative, (ii) plausibly shaped by measurable

long-horizon regularities that can be described in simple functional forms, and (iii) sufficiently volatile

over short and medium horizons that probability forecasts are decision-relevant. In addition, Bitcoin’s

origin as an attempt at peer-to-peer electronic cash provides an institutional rationale for Bitcoin-

native information markets: a prediction market is a form of commerce, and a neutral, digitally native

settlement medium strengthens the case for global participation in a Bitcoin economy [23, 5, 3].

30

B Proper scoring rules elicit truthful beliefs

Consider a binary event with outcomes Ω = {Y,N}. A forecaster has a true belief

p = Pr(Y) ∈ (0, 1), Pr(N) = 1− p,

but reports a probability r ∈ (0, 1) for Y (and 1 − r for N). A scoring rule specifies payoffs sY (r) if

Y occurs and sN (r) if N occurs. Under risk neutrality, the forecaster chooses r to maximize expected

score

Ep[s(r)] := p sY (r) + (1− p) sN (r).

We first illustrate properness with the quadratic (Brier) rule in the binary setting. Take

sY (r) = −(1− r)2, sN (r) = −r2.

Then

Ep[s(r)] = −
(
p(1− r)2 + (1− p)r2

)
.

Differentiating in r yields
d

dr
Ep[s(r)] = −2(r − p),

so the unique maximizer is r⋆ = p.

The same incentive appears under the logarithmic score. Let

sY (r) = log r, sN (r) = log(1− r).

Then

Ep[s(r)] = p log r + (1− p) log(1− r),

and
d

dr
Ep[s(r)] =

p

r
− 1− p

1− r
.

Setting the derivative to zero gives p(1− r) = (1− p)r, hence again r⋆ = p.

By contrast, a non-proper rule can reward coarse, overconfident reporting. Consider the rule

sY (r) = 1{r ≥ 1/2}, sN (r) = 1{r ≤ 1/2},

which pays 1 if the realized outcome was assigned probability at least 1/2 and 0 otherwise. The

expected score becomes

Ep[s(r)] =

p, r > 1/2,

1− p, r < 1/2,

(with any tie convention at r = 1/2). If p > 1/2, then every report r > 1/2 yields the same expected

score p, so the rule fails to elicit the correct probability magnitude and only elicits which side of 1/2

the forecaster is on.

This calculation makes the incentive distinction concrete. Under a proper scoring rule, the report r is

uniquely pinned down by first-order optimality at the true belief p. Under a non-proper rule, expected

payoff can be flat over wide regions of reports, so the mechanism does not discipline probability reports

toward truthfulness.

31

References

[1] Aysu Ahmadova, Taghi Guliyev, and Khatai Aliyev. “The Relationship between Bitcoin and

Nasdaq, U.S. Dollar Index and Commodities”. In: International Journal of Energy Economics

and Policy 14.1 (2024), pp. 281–289. doi: 10.32479/ijeep.14996.

[2] Andrew Bailey. “Digital Value”. In: P&D 1.1 (2024), pp. 27–39.

[3] Andrew M. Bailey, Bradley Rettler, and Craig Warmke. “Philosophy, Politics, and Economics

of Cryptocurrency I: Money without State”. In: Philosophy Compass 16.11 (2021), e12785. doi:

10.1111/phc3.12785.

[4] Andrew M. Bailey, Bradley Rettler, and Craig Warmke. “Philosophy, Politics, and Economics of

Cryptocurrency II: The Moral Landscape of Monetary Design”. In: Philosophy Compass 16.11

(2021), e12784. doi: 10.1111/phc3.12784.

[5] Andrew M. Bailey, Bradley Rettler, and Craig Warmke. Resistance Money: A Philosophical Case

for Bitcoin. Abingdon: Routledge, 2024.

[6] Andrew M. Bailey and Craig Warmke. “Bitcoin Is King”. In: Cryptocurrency: Concepts, Tech-

nology, and Issues. Ed. by Jay Liebowitz. Boca Raton: CRC Press, 2023, pp. 175–197.

[7] William Benter. “Computer Based Horse Race Handicapping and Wagering Systems: A Report”.

In: Efficiency of Racetrack Betting Markets. 1994.

[8] Glenn W. Brier. “Verification of Forecasts Expressed in Terms of Probability”. In: Monthly

Weather Review 78 (1950), pp. 1–3. url: https://api.semanticscholar.org/CorpusID:

122906757.

[9] Harold Christopher Burger. “Bitcoin’s Natural Long-Term Power-Law Corridor of Growth”. In:

Medium (Sept. 2019). url: https://medium.com/quantodian- publications/bitcoins-

natural-long-term-power-law-corridor-of-growth-649d0e9b3c94.

[10] Ángeles Cebrián-Hernández and Enrique Jiménez-Rodŕıguez. “Modeling of the Bitcoin Volatil-

ity through Key Financial Environment Variables: An Application of Conditional Correlation

MGARCH Models”. In: Mathematics 9.3 (2021), p. 267. doi: 10.3390/math9030267.

[11] Yiling Chen and David M. Pennock. “Designing Markets for Prediction”. In: AI Magazine

31.4 (2010), pp. 42–52. doi: 10.1609/aimag.v31i4.2313. url: https://ojs.aaai.org/

aimagazine/index.php/aimagazine/article/view/2313/2179.

[12] Yiling Chen and Jennifer Wortman Vaughan. “A New Understanding of Prediction Markets

Via No-Regret Learning”. In: Proceedings of the 11th ACM Conference on Electronic Commerce

(EC ’10). New York, NY, USA: Association for Computing Machinery, 2010, pp. 189–198. doi:

10.1145/1807342.1807372. url: https://arxiv.org/abs/1003.0034.

[13] Nicola Dimitri. “Bitcoin Mining as a Contest”. In: Ledger (2017).

[14] Mehmet Levent Erdas and Abdullah Emre Caglar. “Analysis of the relationships between Bitcoin

and exchange rate, commodities and global indexes by asymmetric causality test”. In: Eastern

Journal of European Studies 9.2 (2018), pp. 27–45.

[15] Ittay Eyal. “The Miner’s Dilemma”. In: 2015.

32

[16] Robin Hanson. Logarithmic Market Scoring Rules for Modular Combinatorial Information Ag-

gregation. Working paper. George Mason University, Department of Economics, Jan. 2002. url:

https://mason.gmu.edu/~rhanson/mktscore.pdf.

[17] Benjamin P. Jacot and Paul V. Mochkovitch. “Kelly criterion and fractional Kelly strategy for

non-mutually exclusive bets”. In: Journal of Quantitative Analysis in Sports 19.1 (2023), pp. 37–

42. doi: 10.1515/jqas-2020-0122.

[18] Aron Laszka, Benjamin Johnson, and Jens Grossklags. “When Bitcoin Mining Pools Run Dry: A

Game-Theoretic Analysis of the Long-Term Impact of Attacks Between Mining Pools”. In: 2015.

[19] Nikos Leonardos, Stefanos Leonardos, and Georgios Piliouras. “Oceanic Games: Centralization

Risks and Incentives in Blockchain Mining”. In: (2021).

[20] Zhaoyan Liu, Min Shu, and Wei Zhu. “Contrastive Learning Framework for Bitcoin Crash Pre-

diction”. In: Stats 7 (2024), pp. 402–433. doi: 10.3390/stats7020025.

[21] Harry Markowitz. “Portfolio Selection”. In: The Journal of Finance 7.1 (1952), pp. 77–91.

[22] Saralees Nadarajah et al. “Ensemble Learning and an Adaptive Neuro-Fuzzy Inference System

for Cryptocurrency Volatility Forecasting”. In: Journal of Risk and Financial Management 18.2

(2025), p. 52. doi: 10.3390/jrfm18020052.

[23] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: (2008). Available at:

https://bitcoin.org/bitcoin.pdf. url: https://bitcoin.org/bitcoin.pdf.

[24] Abraham Othman et al. “A Practical Liquidity-Sensitive Automated Market Maker”. In: Pro-

ceedings of the 11th ACM Conference on Electronic Commerce (EC ’10). New York, NY, USA:

ACM, 2010, pp. 377–386. isbn: 978-1-60558-822-3. doi: 10.1145/1807342.1807402.

[25] James Pierog. Hedging Hashrate Against Block Reward Variance. https://www.bitcoinprediction.

info/documents/Hedging_Block_Reward_Variance_with_DLCs.pdf. Accessed: 2025-12-23.

2025.

[26] Porkopolis.io. The Chart - Bitcoin Power Law Analysis. Accessed: December 30, 2025. 2024. url:

https://www.porkopolis.io/thechart/.

[27] Matteo Romiti et al. “A Deep Dive into Bitcoin Mining Pools: An Empirical Analysis of Mining

Shares”. In: (2019).

[28] Meni Rosenfeld. Analysis of Bitcoin Pooled Mining Reward Systems. 2011. eprint: arXiv:1112.

4980.

[29] Tim Roughgarden and Clara Shikhelman. “Ignore the Extra Zeroes: Variance-Optimal Mining

Pools”. In: (2021).

[30] Giovanni Santostasi. “The Bitcoin Power Law Theory”. In: Medium (Apr. 2017). url: https:

//giovannisantostasi.medium.com/the-bitcoin-power-law-theory-962dfaf99ee9.

[31] Lev Ushakov. “Bitcoin Power Law Theory — Executive Summary”. In: Medium (Nov. 2024).

url: https://medium.com/@fulgur.ventures/bitcoin-power-law-theory-executive-

summary-report-837e6f00347e.

[32] Yevhen Zolotavkin, Julian Garćıa, and Carsten Rudolph. “Incentive Compatibility of Pay Per

Last N Shares in Bitcoin Mining Pools”. In: 2017.

33

