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1 Introduction

A prediction market is an information market. It turns disagreement into a measurable signal by
letting participants express conviction through trade. Instead of trading an asset directly, participants
trade Event Contracts that pay off based on the outcome of a specific event. The price of an Event
Contract can be read as a market-implied probability, and that probability updates continuously as
traders incorporate news, research, and macro conditions. In other words, prediction markets create a
public forecast stream that is native to uncertainty.

This paper develops and analyzes a Bitcoin-native automated market maker that provides liquidity
for Event Contracts, enabling a scalable forecast of market-implied probabilities that can be used for
hedging and decision-making. We focus specifically on financial forecasting and implement a liquidity-
sensitive Logarithmic Market Scoring Rule (LS-LMSR) denominated natively in Bitcoin. The following
sections derive the Bitcoin-denominated cost function, prove its bounded-loss property, analyze the
profit-and-loss landscape for liquidity provision under different parameter calibrations, and establish a
rigorous framework for intraday risk management.

The mechanism is designed to support a broad family of Event Contracts whose primary purpose is
forecasting and risk transfer on objectively verifiable financial or economic questions. After establishing
the execution and risk framework, we describe applications that motivate the market design. These
include contracts that hedge relative underperformance of Bitcoin versus conventional benchmarks,
contracts that convert independent probability estimates into disciplined expected-value strategies with
fractional Kelly sizing, and contracts that translate high-accuracy probabilistic signals into conventional
linear trading positions. We also develop Bitcoin-mining applications, including difficulty-adjustment
hedges and block reward variance hedges, where settlement is tied to public protocol data and the
economic need is insurance for variance risk.

The platform-level vision is to treat Event Contracts as a standardized interface for expressing and
aggregating forward-looking beliefs, with Bitcoin-native settlement. The prices of Event Contracts pro-
vide a continuously updating forecast stream: a dense set of market-implied probabilities across assets,
horizons, and protocol variables that can be evaluated for calibration and reused for risk management
and decision support, functioning as a continuously updated “weather map” of financial and economic

uncertainty.



2 Background Information

A prediction market is a mechanism for aggregating dispersed information about an uncertain event
whose outcome will be objectively verifiable at a future time. The market offers state-contingent claims
(event contracts) and uses trading activity to produce an interpretable public forecast, typically repre-
sented by prices that approximate probabilities. This mechanism rests on a mathematical foundation
of scoring rules, which were originally developed to evaluate and reward accurate probabilistic forecasts
in domains like meteorology. Proper scoring rules create incentives for forecasters to report their true
beliefs—a principle that extends to market scoring rules, which adapt the concept to sequential trading
among many participants. In this setting, trade is a means to an informational end: the operator may
rationally subsidize participation and liquidity in order to obtain better forecasts, rather than to max-
imize revenue or balance the budget. To understand how these incentives are formally constructed, we
begin with the theory of proper scoring rules and their extension to market scoring rules.

2.1 From Probabilistic Forecasting to Market Scoring Rules

The conceptual origin of prediction markets lies in probabilistic forecasting. Long before electronic
markets, forecasters in domains such as meteorology were asked to report probabilities of events (e.g.,
precipitation), and these probability forecasts were evaluated using scoring rules. A scoring rule is a
contract that assigns a numerical score (or monetary payoff) to a reported distribution r = (r1,...,7m)
once the realized outcome is known. Early work by Brier introduced a quadratic scoring rule for verify-
ing probability forecasts in weather forecasting, and subsequent work formalized the logarithmic scoring
rule, with both families becoming standard tools for evaluating probabilistic predictions. Scoring rules
have since been widely used in weather forecasting and related forecast-verification settings [8, 16].

Formally, let Q = {1,...,m} denote mutually exclusive outcomes of an event. A scoring rule is a
collection of functions {s;(-)}7, where s;(r) is the score paid if outcome i occurs. The rule is (strictly)
proper if a risk-neutral forecaster with true belief p maximizes expected score by reporting r = p [16].

Two canonical examples illustrate this framework. The quadratic rule (Brier score) is given by
si(r) = a; — b(1 —1;)?, b >0,

where the forecaster receives maximum score when r; = 1 for the realized outcome ¢ and is penalized
quadratically for deviations from perfect accuracy. The logarithmic rule takes the form

si(r) = a; + blogr;, b>0,

which rewards accurate probability estimates through the natural logarithm and becomes arbitrarily
punitive as reported probabilities approach zero for the realized outcome. Properness matters because
it creates a disciplined incentive: under standard assumptions, the forecaster is rewarded for stating the
probability distribution they actually believe. A concrete illustration of the incentive logic is deferred
to Appendix B, which derives truth-telling under the quadratic (Brier) and logarithmic scores and
contrasts it with a simple non-proper rule.

A limitation of a one-shot scoring rule is that it elicits a forecast from one forecaster at one time. In
many applications, information arrives gradually and is distributed across many participants. What
is needed is a mechanism that allows many forecasters to contribute over time, while preserving the
incentive logic of proper scoring rules. This is where market scoring rules come into play.



2.2 Hanson’s Insight: The Logarithmic Market Scoring Rule

Hanson introduced market scoring rules (MSR) precisely to pool opinions from multiple forecasters
in a sequential, shared way [16]. An MSR maintains a current market distribution p € A,,. At any
time, a trader may replace it by a new distribution p’. If outcome 7 occurs, the trader receives the
incremental score improvement

II; = Si(pl) — 8i(p)-

This is an intuitive “pay for improvement” rule: a participant profits if they move the market forecast
in a direction that makes the realized outcome more consistent with their information [12].

A key operational feature is that the transfers telescope. Each trader effectively takes over responsibility
for the current score and replaces it with a new score. As a result, the market maker is responsible
only for the difference between the initial distribution py and the final distribution reached by the last
update. This yields a clean bounded-loss guarantee: the market maker’s worst-case loss is finite and
can be expressed directly in terms of the scoring rule [12].

While MSRs are conceptually clear, they do not initially resemble familiar “markets” because partici-
pants appear to be editing probability vectors rather than trading contracts. However, MSRs are equiv-
alent to a more intuitive implementation: a cost-function market maker that offers state-contingent
contracts [11, 12].

2.3 From the LMSR to Cost-Function Market Makers

To predict the outcome of some future event, a cost-function-based market maker offers some initial
quantity of Arrow-Debreu contracts, one for each possible (mutually exclusive) outcome. An Arrow-
Debreu contract pays 100 sats if the corresponding outcome is realized and 0 sats otherwise, and the
contracts are priced between 0 and 100 sats before resolution.

Let ¢; be the total quantity of contract ¢ held by all traders combined, and let q = (¢1...¢,) be
the vector of all quantities held. The market maker utilizes a cost function C(q) that records the
total amount of money traders have spent as a function of the total number of contracts held on each
outcome.

A trader who wants to buy any bundle of contracts such that the total number of outstanding contracts
changes from gojq t0 gnew must pay C(gnew) — C(Qola) sats to the market maker. Negative quantities
encode sell orders, and negative ”payments” encode sale proceeds earned by the trader.

The conventional LMSR cost function is written as:

C(q) = b(q)log (Z eXP(Qi/b(Q))>

where b(q) = b is an exogenously set constant. The instantaneous price of state i is given by the partial
derivative of the cost function along i. The expression for the price is therefore given by:

‘ B 9C(q) _exp (¢i/b)
pi(q) = dq; B Zj exp (qj/b).

While elegant, the conventional LMSR has a significant practical limitation: the liquidity parameter b

is fixed. This means market depth remains constant regardless of trading volume or participation. A



market with $1,000 in total trading volume exhibits the same price sensitivity as one with $1,000,000

in volume.

This fixed-depth property creates two problems for large-scale information aggregation. First, as more
traders participate and the quantity of capital committed increases, individual trades continue to
have the same marginal price impact, potentially creating excessive volatility in high-volume markets.
Second, markets cannot naturally develop deeper liquidity as they mature and attract more capital,
limiting their ability to incorporate information from large, informed traders without dramatic price

movements.

What is needed is a mechanism that automatically adjusts market depth based on trading activity,
making price sensitivity responsive to the level of market participation. This motivates the development
of liquidity-sensitive variants of the LMSR.

2.4 A Liquidity Sensitive LMSR

If we let b(q) =a- >, ; ¢j then the LMSR cost function and price function become liquidity sensitive.
Sensitivity to liquidity is desirable because it squares intuitively with the way we would want markets
to function: small investments move prices less in thick (liquid) markets than in thin (illiquid) markets.
We can take the partial derivative of the cost function to derive the price function as follows:

- 8% -b(q) - log (Z exp(qz-/b(q))>

(3 A
(2

86; o Z g; - log <Z eXp(qi/b(q))>

J

>_; 45 exp(gi/b(a)) — > ; q; exp(g;/b(a))
=a-log g exp(g;/b(q)) | + =2 J
7 (2, 0) - (2, expla;/b(@))

Therefore, the liquidity-sensitive LMSR cost and price functions are:

C(q) = b(q)log (Z eXp(%/’)(Cl)))

pi(q) =a-log | Y exp(q;/b(q)) | + 2.5 45 exp(ai/b(q) — 2; 4j exp(g;/b(q))
j (%) - (5 explarvia)

where b(q) = « - Zj ¢j- The mechanism is designed to price contracts between 0 and 1 dollars, so we
must slightly alter the it to be able to price contracts and trades in a Bitcoin unit of account.



3 A Bitcoin-Denominated Liquidity Sensitive LMSR

For a binary market with outcomes Y and N (Yes/No), we define the market states as:

Q = [q0>qlaq27 .. 7qn]
where each state q; = (y;,n;) represents the quantities of Yes and No contracts held by all traders at

state 1.

If we let b(q;) = a- (y; +n;) then the LMSR cost function and price function become liquidity sensitive.
Since we are denominating our trades in Bitcoin unit of account (where 1 BTC = 100,000,000 sats),
we modify the cost function to price contracts as follows:

Clysvns) = 100 - bla;) - log (exp (Mﬁ)) e <b<7:1>>)

Since we are utilizing a path-independent market maker, the instantaneous price of outcome Y is given

by the partial derivative of the cost function along ;. We can take the partial derivative of the cost
function to derive the price function as follows:

pY(Qi) = g;
_ oy Yi n; . CXP (b(yqii))
=100 o - log (eXp (b(qﬁ) e (b(qﬂ)) e (yi +ni) - (exp (b(ﬁ)) + exp (%))

By symmetry, the price of outcome N is given by the partial derivative of the cost function along n;.
The expression for the price is therefore given by:

oC
(9’1’Li

pn(qi) =

n

=100- « - log (exp (b(i)) + exp (b(ﬁqi))) + 100 - (y, N nz) . (eXZXI() (ylz(qzj)z_ oxp (L))

b(ai b(ai)

Therefore, our revised Bitcoin-denominated liquidity-sensitive LMSR, cost and price functions are:

Clai) =100 blqy) - log (e"p (b(yéi)) e (b(Z)))
exp (b(ﬁ))

pria) =100-a-tog (op (55 ) + o (55) ) + 100 (it m) - (exp (ity) + o (i)
= v o () o () o)

b(a

i

o]

where b(q;) = a - (y; + n;).

The pricing rule has bounded loss. Specifically, the market maker has worst-case loss equal to the
amount of the initial subsidy. For a two-outcome market, the market maker loses at most C(qp) sats
regardless of which outcome occurs or the final trading state.



3.1 Bounded Loss Analysis

For this revised price and cost function, we can derive the profit and loss of the market maker. The
cost of trader ¢; who is the i-th trade with the market maker is C(q;) — C(qi—1). The sum of the costs

of the trades are:

Z C(ai) — C(qi-1) = [C(a1) — C(qo)] + [C(az) — C(q1)] + [C(as) — C(az)] +--- + [C(aAn) — C(An-1)]

= C(a1) — C(qo) + C(az) — C(a1) + C(as) — C(az) + -+ + C(dn) — C(An-1)
= C(an) — C(ao)
where all intermediate terms C(q1),C(qz2),...,C(dn-1) cancel out in the telescoping sum.

The automated market maker must pay 100 - ¢; sats if outcome i occurs. Therefore, the net P&L of
the market maker if outcome i occurs, for an initial state qg and final state g, is:

PnL;i(qo,dn) = C(dn) — C(qo) — 100 - g;

The pricing rule has bounded loss. Specifically, the market maker has worst-case loss equal to the
amount of the initial subsidy: it loses at most C(qg) sats.

3.2 Transaction Fees and Path Dependence

Without fees, a cost-function market maker is path-independent. For any sequence of trades that
moves the state from qg to q, the total cash collected from traders is

k

Z(C(Qz‘) - C(Qiﬂ)) = C(aqr) — C(qo),

i=1
so the market maker’s outcome-contingent P&L depends only on the endpoints.

Now impose a proportional transaction fee with rate 7 = 0.02 charged on each trade’s absolute cash
flow. For the ¢th trade, the trader’s payment to the market maker is

AC; = C(q;) — C(ai-1),
which may be positive (net buy) or negative (net sell). The fee collected on that trade is

Therefore total fee revenue over a discrete trading path P = {qp - q1 — -+ — qi} is

k
®(P) = TZ |C(ai) — C(ai-1)]-
i=1
This is the source of path dependence. The endpoint term C(qi) — C(qo) is fixed, but >, |AC;]
increases with back-and-forth trading.

A continuous formulation makes this explicit. Let v : [0,7] — R? be a trading path with v(t) =
(y(t),n(t)) and let dq = (dy, dn). Since p = VC, we have

dC =VC(q) - dq.



Define the fee functional as total variation of C' along ~:
O(v) = 7'/ |[dC| = T/|VC(q) 'dq|.
¥ ¥

For a piecewise-linear path that interpolates the discrete states, this reduces to ®(P) above.

With fees, the market maker’s P&L becomes
PnL,(P) = (C(ar) — C(qo)) — 100 gk + @(P),  w € {Y,N},

where q; = (yk, k) and gy, x = Yk, ¢nk = 7 (or the corresponding net customer quantities if a virtual
seed state is used). Different paths with the same endpoints generally satisfy ®(P;) # ®(Pz), so higher
two-sided trading volume increases fee revenue regardless of the eventual outcome.

3.3 Market Maker Incentives and Optimal Market Design

The market maker is therefore incentivized to list markets that elicit high levels of disagreement from
a diverse set of traders, or list markets with inherently high volatility to induce winding trading paths.
The most profitable markets to provide liquidity for are markets that do not immediately reveal much
information by way of a market-consensus forecast.

Markets that are the most informative tend to have the highest consensus amongst traders, which
implies traders have purchased a sufficient quantity of contracts such that the price of yes (or no)
is near 100, and no other traders are willing to take a significant contrary position to the market.
Providing liquidity to prediction markets is optimal for topics that have high uncertainty, where people
have high conviction. Markets with low uncertainty imply traders have collectively found consensus,
and thus there is little opportunity to take profitable risk.



4 Optimal LS-LMSR Parameter Calibration

The liquidity-sensitive LMSR sets the liquidity parameter as a function of market activity,

ba)=a g
=1

so market depth increases automatically as more contracts are outstanding [24].

The effect of a calibration on market maker profitability and
profit landscapes across different terminal market states.

price dynamics can be visualized through
Figures 1 and 2 demonstrate these rela-

tionships by plotting market maker profit and loss (excluding transaction fees) as a function of final

contract quantities.
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In these visualizations, the horizontal and vertical axes represent the final quantities of contracts ¢x and



qy respectively. The color intensity indicates market maker profitability: dark red regions represent
positive profit from liquidity provision, while blue and white regions indicate losses. The diagonal black
lines represent constant price levels (py = 95 sats and px = 95 sats), illustrating how price boundaries
shift with parameter changes.

Figure 1 demonstrates the critical role of « in determining market depth and price sensitivity. Lower
values of a (such as o = 0.01) create highly volatile price dynamics where small trades produce large
price movements, resulting in narrow profitable regions for the market maker. As « increases to 0.03
and 0.06, the profitable regions expand significantly, indicating that higher « values provide increased
market depth and stability. This occurs because larger o reduces the marginal price impact of individual
trades, making the market more resilient to order flow volatility.

Figure 2 illustrates how different initial quantity vectors q° affect the profit landscape while holding
a = 0.05 constant. The symmetry and positioning of profitable regions shift based on the initial
market state, but the overall structure remains consistent. Markets initialized with balanced quantities
q’ = (1,1) or q° = (2,2) exhibit symmetric profit patterns, while asymmetric initializations create
correspondingly skewed profit landscapes.

4.1 Default Parameters for Glimpse

Glimpse currently sets @ = 0.111 and ¢y = [5000,5000] as the platform defaults. These values bal-
ances initial market depth with meaningful price responsiveness under typical trade sizes observed in

simulation.

Figure 3 presents the profit and loss landscape for Glimpse’s operational LS-LMSR, implementation
using the platform’s standard parameter calibration: a = 0.111 and initial quantity vector qo =
(5000, 5000). This configuration yields an initial subsidy of C(qp) = 576,246 sats, representing the

maximum potential loss exposure from liquidity provision.

The visualization demonstrates several critical operational characteristics. The green line delineates
the breakeven boundary where market maker profit and loss from liquidity provision equals zero,
formally defined by the condition PnL;(qo,q,) = 0. The dotted lines represent constant price contours
at py = 95 sats and py = 95 sats, corresponding to 95-sat contract prices that serve as natural
boundaries for high-conviction market states.

The color gradient reveals the fundamental profitability structure of Glimpse’s market making mecha-
nism. Red regions indicate positive profit from liquidity provision alone, occurring when the terminal
market state exhibits prices below the 95-sat threshold. This corresponds mathematically to market
configurations where one outcome maintains relatively low conviction, allowing the automated market

maker to benefit from the spread between collected premiums and required payouts.
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Figure 3: Market maker profit and loss landscape for Glimpse’s standard LS-LMSR configuration with
a = 0.111 and qp = (5000,5000). The green line represents the breakeven boundary, dotted lines
indicate 95-sat price contours, and color intensity shows profitability from liquidity provision.

Conversely, blue regions represent scenarios where liquidity provision becomes unprofitable, occurring
when terminal prices exceed 95 sats for either outcome. In these high-conviction states, the market
maker faces adverse selection as informed traders have moved prices to reflect strong consensus. How-
ever, the bounded loss property ensures that deficits never exceed the initial subsidy C(qp), providing

a finite risk exposure regardless of trading outcomes.

The practical implications for market dynamics are significant. Any trading sequence can be conceptu-
alized as a stochastic path {qop — q; — - -+ — q, } through the state space, representing the cumulative
effect of trader decisions over the market’s lifecycle. The profitability of liquidity provision depends
critically on where this random walk terminates relative to the price boundaries, with paths ending
in moderate-conviction regions (prices below 95 sats) yielding positive returns and paths converging
to high-conviction states (prices above 95 sats) resulting in controlled losses bounded by the initial

subsidy.

4.2 Normalization of Prices into Probability Distributions

In Glimpse, the economic terms of trade are defined by the LS-LMSR cost function. For a market
state q, a trade that moves the state from golq t0 Quew is charged (or paid, in the case of a sale) by

10



the cost difference

AC = C(qncw) - C(qold)'

Accordingly, contracts are not purchased by multiplying a quoted per-contract price by a quantity.
The executed cash flow is determined directly by the path-independent cost function evaluated at the
pre- and post-trade states. The instantaneous LS-LMSR price vector, obtained as the gradient of the
cost function, serves as a local marginal-price description of the curve at the current state, but it is
not itself the pricing rule used to compute the total cost of a discrete trade.

Because the liquidity-sensitive construction does not, in general, yield raw marginal-price components
that sum exactly to the 100-satoshi payout normalization, Glimpse separates (i) the trade economics
from (ii) the forecast signal presented to users. Let p;(q) := 9C(q)/0q¢; denote the raw LS-LMSR
marginal prices. Glimpse converts these raw values into a probability distribution by normalization,

pi(a)
P(q) = ~ ’ P(q) =1,
' ka:1 pk(Q) ; ’
and reports the corresponding contract “odds” on a 0-100 scale via 100 P;(q). This normalization is a
representational layer designed to ensure that the platform outputs a coherent, interpretable probability
distribution that can be used as a forecasting signal. It does not modify the underlying cost function,
and therefore it does not alter the cash flow of any trade, which remains exactly C(gnew) — C(Qold)-

Under this architecture, it is not mathematically accurate to treat the liquidity parameter « as a client
commission. The parameter o enters through the liquidity function b(q) = « ), ¢; and primarily
governs market depth and the responsiveness of the market state to incremental order flow. Lower «
increases early-stage price elasticity, meaning that small trades can move the state rapidly toward near-
certainty, concentrating favorable execution among early participants and reducing the opportunity for
later traders to obtain comparable odds. Higher « increases depth, requiring more cumulative liquidity
to move the market toward certainty, which distributes execution quality across a broader set of traders
and tends to improve the stability of the forecast signal as participation grows. These effects operate
through the curvature of C' and the sensitivity of VC to changes in q, rather than through a fixed
per-trade charge.

The relevant economic analogue of a “spread” in a cost-function market maker is therefore dynamic
and state-dependent. For a discrete trade that increases outcome-i quantity by Ag; > 0 (holding other
components fixed for exposition), the trader’s average execution price is

_ C(qola + Agie;) — C(qowa)

Di == qu )

which generally differs from the instantaneous marginal price p;(golq) because the trade traverses a
non-linear cost surface. Market depth calibration via « affects this execution-price impact, but it does
not constitute a separately assessed fee and it does not map one-to-one into platform revenue, which
depends on realized order flow and resolution outcomes.

11



5 Intraday Maximum Potential Payout and Open Interest

This section provides an explicit computation, at intraday checkpoints, of (i) open interest and (ii) the
operator’s maximum potential settlement outflow across all outstanding Event Contracts while markets

remain active.

5.1 Definitions at an intraday checkpoint

Consider a binary Event Contract with outcomes Y and N. At a checkpoint time ¢, let the outstanding
quantities be

q(t) = (y(t),n(t),  bla(t)) = ay(t) +n(t)),
and let the Bitcoin-denominated LS-LMSR cost function be

C(y(t),n(t)) = 100 - b(q(t)) log (exp(bé((%)> t exp(b(zq(;t))))) '

Open interest. We define contract open interest at time ¢ as
OI(t) := y(t) + n(t),

and its satoshi-notional as 100 - OI(¢) sats.

Gross payout by realized outcome. If the market resolves based on the state at time t, the gross

payout owed to winning contract holders is
Gy (t) :=100y(¢), Gy (t) :==100n(t).

Operator cash-in and maximum potential settlement outflow. Let qg be the market state at
listing time. The cumulative cash paid into the market maker by time ¢ is

R(t) :== C(q(t)) — C(qo)-

This formula ignores transaction fees, which makes the resulting bound conservative because fees

increase available reserves.

Conditional on an immediate resolution at time ¢, the operator’s net settlement outflow is
Sy (t) := Gy (t) — R(t), Sn(t) := Gn(t) — R(t).
We define the mazimum potential payout (worst-case net settlement outflow) at checkpoint ¢ as
M (t) := max{Sy (), Sn(t)}.

For a platform with multiple simultaneously listed markets indexed by k, the corresponding aggregate
quantities are computed by summation, e.g.

Miotar(t) := > My(t),  Oliga(t) := Y OI(t).
k k

12



5.2 Worked example with intraday checkpoints

Let the initial state be
qo = (5000, 5000), a=0.111, b(q) = a(y +n).

Trades occur in sequence. Alice buys 100 contracts on Y. Bob buys 300 contracts on N. Carol buys
500 contracts on Y. Thus the checkpoint states are:

qo = (5000,5000), q; = (5100,5000), g2 = (5100,5300), q3 = (5600,5300).
The corresponding b(q;) = a(y; + n;) values are
b(qo) = 1110.0, b(q1) =1121.1, b(qs) = 1154.4, b(qs) = 1209.9.
Using the above cost function, the cost-function values (in sats) are approximately
C(qo) ~ 576,939, C(q1) =~ 582,820, C(qg2) ~ 600,449, C(qs3) =~ 629,791.
Therefore the amounts paid by each trader are:
Alice pays C(q1) — C(qo) = 5,881,
Bob pays C(qz2) — C(q1) = 17,629,

Carol pays C(q3) — C(qz) =~ 29,342.

The cumulative cash-in at the final checkpoint is

R(3) = C(q3) — C(qo) ~ 52,852 sats.

5.2.1 Trader payoffs and conditional P&L at resolution

In Glimpse’s operational model, the initialization vector qo = (Yo, n0) is a virtual seed state used to
parameterize the LS-LMSR curve and to ensure continuous two-sided quoting from market open. It
does not represent contracts sold to customers. Accordingly, open interest and settlement exposure are

computed on net customer-purchased quantities:
Ay; == yi — Yo, An; :=mn; —ng.

At each checkpoint q;, we compute customer open interest OI(i), gross customer payouts if yes or no
is correct Gy (i), Gy (i), and net settlement outflows Sy (i), Sy (i) as follows:

Sy (i) = Gy (i) = (C(a;) = Clao)),  Sw(i) = Gn(i) — (Clai) — Clao)).

Here S, (i) > 0 means the operator must pay out S, (¢) sats from the liquidity reserve provided by the
subsidy if outcome w € {Y, N} resolves immediately at checkpoint i. If S, (i) < 0, the operator retains
—S., (%) sats net of customer capital committed.
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Checkpoint (y,n) | OI R Gy Gn Sy SN
to (open) | (5000,5000) | 0 0 0 0 0 0

t1 (Alice) (5100, 5000) | 100 5,881 | 10,000 0 4,119 —5,881
to (Bob) (5100,5300) | 400 | 23,510 | 10,000 | 30,000 | —13,510 6,490
t3 (Carol) (5600, 5300) | 900 | 52,852 | 60,000 | 30,000 7,148 | —22,852

Each contract pays 100 sats if its outcome occurs and 0 otherwise.
Alice holds 100 Y-contracts and paid ~ 5,881 sats. Her conditional P&L is:

II3ee ~ 100 - 100 — 5,881 = 4,119, Itee ~ —5,881.
Bob holds 300 N-contracts and paid = 17,629 sats. His conditional P&L is:
5P ~ —17,629, 15" ~ 100 - 300 — 17,629 = 12,371.
Carol holds 500 Y-contracts and paid =~ 29,342 sats. Her conditional P&L is:
2l ~ 100 - 500 — 29,342 = 20,658, 5ol ~ —29,342.

From the operator’s perspective, the conditional market maker P&L (excluding transaction fees) at
checkpoint 3 is computed on net customer quantities. Since Aysz = 5600 — 5000 = 600 and Ang =
5300 — 5000 = 300, we obtain:

PnLy (3) = R(3) — 100Ay; ~ 52,852 — 60,000 = —7,148,

PnLy(3) = R(3) — 100Ans ~ 52,852 — 30,000 = 22,852.

5.3 Liquidity Headroom and the LS-LMSR Subsidy
We define the worst-case immediate-resolution deficit at checkpoint i as
D(i) := max{0, Sy (i), Sn(i)}.

This is the additional amount, beyond collected customer premiums, that must be funded from the
liquidity reserve if the event resolves immediately at checkpoint i.

At checkpoint t3, the table gives Sy (3) = 7,148 and S (3) = —22,852, hence
D(3) = max{0, 7,148, —22,852} = 7,148 sats.

Therefore, at t3 the market requires only 7,148 sats of reserve funding to guarantee settlement in the
worst case for this market configuration. The initial subsidy as calculated by C(qg) is the worst case
loss that the market maker can experience by providing liquidity in any prediction market, which is
why every market is pre-funded with C(qg) sats prior to listing.
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6 Applications of Event Contracts

Event contracts convert uncertainty about a specified outcome into a fully collateralized claim with
objective settlement. A trader pays a premium in sats according to the cost function and receives a
fixed payoff if the event occurs, so the maximum potential loss is known at the time of trade (and
there is no margin or liquidation mechanism). The traded price is naturally interpreted as a market-
implied probability, so the instrument simultaneously provides a hedge, a return opportunity, and a
quantitative forecast. These properties are well matched to risks in Bitcoin-native finance that are not
handled cleanly by spot exposure or linear instruments.

We begin with the most direct hedging use-case: a Bitcoin holder who wishes to insure against un-
derperformance relative to a benchmark over a fixed horizon. This contract family is simple to define,
settles on public price data, and makes the hedge objective explicit. It also illustrates the general
pattern that recurs throughout this section. A payoff can be written to match the economic loss state,
and the market price can be read as a probability that supports transparent sizing and risk limits.

6.1 Hedging Bitcoin Underperformance with Event Contracts

Bitcoin holders face a practical risk that is not captured by simple spot volatility. The risk is relative
underperformance versus conventional benchmarks that anchor institutional portfolios and liabilities,
such as broad equity indices and commodity safe havens. From a portfolio-construction standpoint,
the relevant object is not the unconditional distribution of Bitcoin returns, but the joint distribution of
Bitcoin returns with other assets, especially their covariances [21]. Empirically, Bitcoin has exhibited
meaningful co-movement with technology-heavy equity indices in some samples, while its relationship
with commodities such as gold is often weaker or unstable across methods and horizons [1, 14]. This
motivates a hedging layer that pays explicitly when Bitcoin underperforms a selected benchmark over
a specified horizon.

Fix a horizon T (e.g. one month or one year) and let Px(0) and Px(T) denote the benchmark price at
trade time and resolution time, respectively, for X € {BTC, SPX, IXIC, Gold, NVDA  TSLA}. Define

the log return
Px(T)
Rx =1 .
* Og( Px(0) )

For each benchmark A we define a binary relative-performance event contract

Y4 :={Ra — Rprc > 0}, Na = {Ra — Rprc <0}.

Each contract pays 100 sats if its outcome occurs and 0 otherwise. At market open, we assume the
market is seeded at a neutral prior 50-50, so the initial displayed odds are 50 sats on Y4 and 50 sats
on Nyg.

The hedging interpretation is direct. A Bitcoin holder who wishes to insure against relative underper-
formance buys Y4 contracts (“A beats BTC”) on several benchmarks A. When Bitcoin underperforms,
the hedge pays 100 sats per contract. When Bitcoin outperforms, the hedge expires worthless and the
premium is the hedging cost.

We now show a worked example illustrating (i) market listing and odds, (ii) expected-value arithmetic
under a 50-50 start, and (iii) how one can size positions using a fractional Kelly rule and then adjust

the allocations using mean—variance ideas.
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6.1.1 Worked example: a diversified relative-performance hedge

Consider five yearly markets:
Ycold : {Rcola — Rerc > 0}, Yspx : {Rspx — Rerc >0}, Yixic: {Rixic — Rerc > 0},

Yxvpa ¢ {Bnvpa — Bere > 0}, Yrspa @ {Rrsua — Rprc > 0}.
Assume each market starts at price 50 sats on Y and 50 sats on V. Let the hedger have a forecasting

model that outputs subjective probabilities

PGold = 0.96, pspx = 0.53, pxic = 0.51, pnvpa =049, prsLa = 0.48.

These probabilities are illustrative. They can reflect a view that Bitcoin is comparatively likely to
underperform gold and broad equities over the next year, but less likely to underperform idiosyncratic
single-name equities. The empirical motivation for treating technology indices as more coupled to
Bitcoin than gold is consistent with evidence of a positive Bitcoin—Nasdaq relationship in some samples
and weak or insignificant gold effects in some specifications [1].

At price 50, a Y-contract has expected profit (in sats)
E[II] = 100p — 50 = 100(p — 0.5),

and expected return on premium (ROI) is

Therefore:
ROIgoq = 12%, ROIgpx = 6%, ROILixic = 2%, ROInvpa = —2%, ROItspa = —4%.

A hedger focused purely on expected value would avoid negative-ROI hedges. A hedger focused on
tail-risk reduction may still buy some negative-ROI insurance, but the framework makes the tradeoff
explicit.

For sizing, the simplest Kelly case is a event contract with cost of ¢ sats that pays 100 sats if it wins
and 0 otherwise. Per unit premium ¢, the net win multiple is
100 — ¢

b= .
c

The full Kelly fraction of bankroll to allocate to this trade is the classical expression

o bp—(bl—p)’

and at ¢ = 50 we have b =1 so
ff=2p—1.

Because full Kelly is typically too aggressive under model error and produces large drawdowns, practi-
tioners often use fractional Kelly [17, 7). Let A € (0,1) be the Kelly fraction (e.g. A = 1/2). Then the
proposed allocation to each positive-edge market is

fi=A(2p;i — 1)y, (z)4 = max{z,0}.
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With A = 1/2, we obtain
faola = 0.06, fspx =0.03, fixic = 0.01,

and fyvpa = frsna = 0 under an EV-first rule.

This produces an implementable hedging budget. If the bankroll dedicated to hedging is W =
10,000,000 sats, then the premiums allocated are

WfGold = 600,000, Wfspx = 300,0007 WfIXIC = 100,000 sats.

Assuming a trader can buy contracts with an average cost of 50 sats per contract (this would require

the prices to be below 50 sats prior to the trade being executed), the contract counts are

600,000
50

If, for example, Bitcoin underperforms gold over the year, the hedge payout from the gold leg is

100gGolq = 1,200,000 sats, and the net profit on that leg is 1,200,000 — 600,000 = 600,000 sats.

qGold = = 12,000, gspx = 6,000, qgxic = 2,000.

Finally, diversification is not about holding many contracts. It is about reducing covariance among
payoffs [21]. Let X; denote the random return of the ith hedge leg per unit premium. A mean—variance
adjustment chooses weights w to target a desired expected return while reducing variance:

T Y. T

L <

I‘Eg%(w I 2W Yw, ZwlfL
K3

where p and ¥ are the mean vector and covariance matrix of the hedge-leg returns [21]. In practice,
one estimates ¥ from historical data or from a risk model. The empirical point is that a gold-relative
hedge can behave differently from a Nasdag-relative hedge because Bitcoin can be more coupled to
Nasdaq than to gold in some samples, so mixing both legs can reduce the chance that all hedges fail
in the same regime [1].

6.2 Generating ROI with Event Contracts

An event contract is a priced probability claim. If the market-implied probability for event Y is m (so
the contract trades at 100m sats), and a trader has an independent probability estimate p, then the

expected profit per contract is
E[II] = 100p — 100m = 100(p — m).

Positive expected value therefore corresponds to p > m on a “Yes” contract and p < m on a “No”
contract. Profitability comes from identifying miscalibrated public odds and allocating capital with a
disciplined risk rule rather than taking blind risk on everything [7, 17].

A wuseful interpretation is to treat the market price as an aggregate prior and an individual model
as a private signal. Bill Benter emphasizes that a purely fundamental model can be biased relative
to the public odds, and that a practical path to profitability is to combine the model and the public
probability estimate rather than ignoring the public [7].

Position sizing follows the same Kelly logic as above. For a cost of ¢ sats, net win multiple b =
(100 — ¢)/¢, and win probability p, the full Kelly fraction is
bp— (1 —p)
*
[ = 5 :
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Because estimation error and drawdown constraints matter, fractional Kelly is standard in practice
[17, 7]. If f = Af* with X € (0, 1), then a trader can bound risk while retaining a large fraction of the
long-run log-growth objective.

A simple subsidized-start example clarifies the economics. Suppose a market is listed at a neutral seed
m = 0.5 (price ¢ = 50), and your model estimates p = 0.58. Then E[II] = 100(0.58 — 0.5) = 8 sats per
contract, so the expected ROI is 8/50 = 16%. At ¢ = 50, the full Kelly fraction is f* = 2p — 1 = 0.16,
and a conservative fractional Kelly at A = 1/2 allocates 8% of bankroll. This is the basic route by which
a forecasting model, if genuinely informative, can be converted into positive expected value without
uncontrolled leverage.

6.3 Simple Trading Strategies with High Accuracy Forecasts

Event contracts also provide a bridge from probabilistic forecasts to conventional trading strategies in

linear or leveraged instruments. Consider a daily directional event on an index, such as
Y := {S&P 500 closes up on date t}, N := {S&P 500 closes down (or non-up) on t}.

If the market-implied probability is m and your forecast probability is p, then the event contract itself
has expected profit 100(p — m) sats as above.

To translate this signal into a futures or perpetuals position, model the one-day index return as taking
two representative values, +r in the up state and —r in the down state. Then a forecast p implies an
expected one-day return
p=p-r+1=p)(-r)=2p—1r

If you trade a linear instrument with daily return approximately p and daily variance approximately
o2, a standard continuous-time Kelly approximation suggests sizing proportional to u/o?. In practice,
volatility is time-varying and heavy-tailed in crypto and related markets, so volatility forecasting and
crash risk matter for any leverage-based strategy [22, 20]. This is exactly why event contracts are
operationally attractive: they bound downside to the premium and remove liquidation dynamics.

Beyond a single directional trade, a probability stream supports several simple strategy templates. A
basic implementation is a threshold rule: take risk only when the edge is large enough to plausibly
clear spreads, fees, and slippage, e.g. trade only if |p — m| > 6 for a calibrated 6 > 0. Because the
forecast updates continuously, the same rule naturally implies rebalancing: exposures are increased
when p moves further from m and reduced when the signal weakens, subject to hard leverage caps and
drawdown limits.

Forecasting is most valuable when it is calibrated. A model that outputs probabilities should be
evaluated on calibration and forecast error, not only hit rate. The platform-level point is that event
contracts produce a standardized object for evaluation: each market is a well-defined question with an
objectively verifiable settlement rule. This makes it feasible to measure whether a strategy produces
persistent edge, and to adjust capital allocation rules over time using disciplined fractional Kelly sizing
rather than ad hoc leverage [17, 7).

6.4 Event Contracts for Bitcoin Mining

Bitcoin mining is a probabilistic, winner-take-all contest. A miner invests computational work and
wins the right to author the next block with probability proportional to their share of global hashrate.
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Inter-block times are well modeled as exponential, so the number of blocks found over a fixed horizon
is well approximated by a Poisson process [27, 28, 13]. The protocol adjusts the difficulty every 2016
blocks so that the average inter-block interval remains approximately ten minutes [27].

6.4.1 Mining variance and the economic role of pools

Solo mining inherits the variance of a Poisson arrival process. With hashrate h, difficulty D, block
reward B, and horizon ¢, the expected block count is A = ht/232D, and the variance of blocks found is
also A [28]. This implies extreme payout dispersion for small miners, including long droughts in which
no block reward is earned [28, 29].

Mining pools exist to reduce this variance by paying miners against submitted shares. Pools implement
reward-sharing schemes such as Full-Pay-Per-Share (FPPS), which minimizes miner variance but shifts
risk to the pool operator, and Pay-Per-Last- N-Shares (PPLNS), which reduces variance but still exposes
miners to pool luck [29, 28, 25]. Empirically, pooling pressure has contributed to concentrated mining
power, and even within large pools a small number of actors can receive a majority of payouts [27].
This concentration matters because Bitcoin’s neutrality and censorship resistance rely on the absence
of controlling coalitions in block production [25, 19].

6.4.2 Mining pool game theory and malicious incentives

Pooling changes the strategic landscape. Competition among pools has been linked to adversarial
behavior, including denial-of-service and block-withholding-style attacks [27]. In particular, block
withholding can be profitable at the pool level via infiltration, creating a prisoner’s-dilemma structure
where mutual attack can be an equilibrium even though both sides would be better off without attack-
ing. These dynamics can push miners away from open pools and toward closed pools and coalitions
[15].

Within pools, reward schemes can also create internal incentive problems. In PPLNS pools, miners
may benefit by delaying share reports, and incentive compatibility depends on the relative power of
the largest miner [32]. More broadly, models that treat mining as a setting with a small number of
dominant players and many small players imply structural incentives to merge into larger entities,
increasing the value-per-unit of resources as coalitions grow [19].

These forces jointly motivate a design goal. Variance must be reducible without increasing the payoff
to consolidation. A market-based hedge that is available to small miners and small pools can relax the
variance pressure that otherwise favors large pools [25].

6.4.3 Miner Hedging with LS—-LMSR Event Contracts

This subsection shows how Bitcoin-native event contracts can be used to hedge two mining risks
that matter operationally. The first is the discrete revenue shock induced by a positive difficulty
adjustment. The second is per-block payout variance, which is intrinsic to the winner-take-all nature
of mining and is a primary driver of pooling pressure. Mining concentration is empirically observable
and is economically important because decentralization supports Bitcoin’s neutrality and censorship
resistance [27, 19]. Moreover, mining pools face strategic incentives that can be socially harmful,
including block-withholding incentives that form a prisoner’s-dilemma structure among pools [15] and
inter-pool attack dynamics that can affect long-run viability [18]. A hedging layer that reduces variance
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without requiring miners to migrate to the largest pools can therefore be interpreted as decentralization-
supporting infrastructure [25].

Throughout, contracts pay 100 sats if their outcome is realized and 0 otherwise. Trades are executed by
a liquidity-sensitive LMSR cost function with a virtual seed state. In addition, we assume an explicit
execution subsidy that discounts cost-function charges by a factor p € (0,1). If a trader moves the
state from qelq t0 Quew, the raw cost-function charge is

AC = C(dnew) — C(qo1a),

and the trader pays p AC. We take p = 0.5 in the worked examples below. The 100-sat resolution
payouts are unchanged, so p is a direct liquidity subsidy.

6.4.4 Market A: “Will the next difficulty adjustment go up?”

Bitcoin retargets mining difficulty every 2016 blocks to stabilize expected block time. A positive
adjustment reduces expected sats earned per unit of hashrate in the subsequent epoch, holding the fee
environment fixed. This creates a discrete, objectively verifiable revenue shock and therefore a natural
hedging target.

We define the binary event contract

Y := {the next difficulty adjustment is positive},
N := {the next difficulty adjustment is non-positive}.

Let the LS-LMSR state be q = (y,n). We use the Bitcoin-denominated liquidity-sensitive cost function

bq) = aly+n),  C(y,n) = 100b(q)log (exp(b(yq)> + exp<b(”®>) .

A trade that moves the market from qgiq t0 Quew has raw charge AC, and the subsidized cash paid is
p AC.

To size a hedge, let Ry denote the miner’s expected sats revenue over the next epoch under baseline
difficulty. Let 6 > 0 denote a modeled conditional difficulty increase given that Y occurs. A simple
revenue-impact approximation is

1 5
L~ 1-—— ) =Ry—
RO( 1+5) Rop 5

which is the expected revenue shortfall the miner wishes to offset. If the miner buys Ay contracts on
Y, then the gross payoff upon Y is 100Ay sats. Under a subsidy factor p, the net cash received in the
Y state is

100Ay — p AC.

We choose Ay so that this net amount approximately matches L.

6.4.5 Worked example A: difficulty hedge with a large seed state

We initialize the market at a large initial subsidy to support large miner flows with modest slippage,

qo = (500,000;500,000),  a=0.111, p=0.5.
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Then the initial subsidy is
C(qo) =~ 57,693,934 sats.

A miner buys Ay = 100,000 contracts on Y, moving the state to
q1 = (600,000; 500,000).
The raw cost-function charge is
AC = C(q1) — C(qp) = 6,765,750 sats,
so the premium paid is
p AC =~ 3,382,875 sats.

If Y occurs, the hedge pays 100Ay = 10,000,000 sats, hence net hedge cash in the Y state is
10,000,000 — 3,382,875 = 6,617,125 sats.

If N occurs, the hedge pays 0 and the miner’s loss is the premium 3,382,875 sats.

To connect the hedge to mining economics, suppose the miner’s expected epoch revenue is Ry = 1 BTC
= 100,000,000 sats and conditional on Y the miner models a difficulty increase of § ~ 7.1%. Then the
modeled revenue shortfall is

0.071
L ~ 100,000,000 - Toml — 6,629,318.39 ~ 6.6 x 10° sats,

which is approximately offset by the computed hedge payoff 6,617,125 sats.

6.4.6 Market B: “Which pool mines the next block?”

Block discovery is a winner-take-all process with high payout variance when the win probability is
small. Variance reduction is a principal reason miners join pools. However, pooling also concentrates
block production, and concentration is empirically visible in recent hashrate-share data. Concentration
matters because mining coalitions can create censorship and neutrality risks [19, 27]. Mining pools can
also face strategic adversarial incentives, including block-withholding-style dynamics that can be ratio-
nal in equilibrium [15]. A hedging mechanism that reduces the cost of variance for smaller participants
can therefore reduce the structural pressure toward ever-larger pools [25].

The natural informational question is multi-outcome:
) = {Foundry, AntPool, ViaBTC, F2Pool, SpiderPool, MARA, ..., Other},

where the realized outcome is the identity of the pool that mines the next block. A multi-outcome
LS-LMSR represents this as a single probability vector over pools. Let q = (¢1,-..,¢n) be the state.
We define

b():am i, C(q) = 100b(q)lo " exp( -4
q ;q q q) log ; p<b(q)>

For hedging, miners typically need a complement payoff, i.e., a claim that pays when their pool does
not find the next block. This is the “bet against your own pool” structure that turns an all-or-nothing
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payout into a smoother cash flow and can reduce pooling pressure [25]. Operationally, the cleanest
interface is therefore an event contract per major pool i:

Y; := {pool ¢ mines the next block}, N; := {pool i does not mine the next block}.

These binaries can be derived from the multi-outcome market as a quoting convenience, but the eco-
nomics are identical: they pay exactly in the drought state that causes miner stress.

6.4.7 Worked Example B: Hedging Hashrate Against Block Reward Variance

We consider a single pool-specific binary market, e.g. Foundry:
Y := {Foundry mines the next block}, N := {Foundry does not mine the next block}.
We use the same large-seed configuration as above,
qo = (500,000, 500,000), a = 0.111, p=0.5.

Suppose the miner’s incremental payout if Foundry mines the next block is b = 1,000,000 sats, and 0
otherwise for that block. The miner purchases An = 14,212 contracts on N, moving to

a1 = (500,000,514,212).
The raw cost-function charge is
AC = C(q1) — C(qp) ~ 842,358 sats,

so the subsidized premium paid is
p AC =~ 421,179 sats.

If N occurs, the hedge pays 100An = 1,421,200 sats, hence net hedge cash is
1,421,200 — 421,179 ~ 1,000,021 sats,

which approximately matches the target b. If Y occurs, the hedge pays 0 and the miner loses the
premium 421,179 sats.

Outcome Mining payout | Hedge net payout Total
Foundry mines (V) 1,000,000 —421,179 578,821
Foundry does not mine (V) 0 +1,000,021 | 1,000,021

This is the basic variance-hedging geometry, and the prediction markets odds would be continuously
recalibrated in real-time. However, it shows if the odds have a significant deviation from the true likeli-
hood (Foundry has approximately 20-30% of global hashrate, while we priced this initial Event Contract
at the platform default of 50% probability) then the markets can be highly profitable for hedgers or
speculators alike. The opportunity for profit therefore comes when the market-based probability is
significantly different from the true probability.

Mining is an all-or-nothing contest at the block level, and the hedge is a complementary all-or-nothing
payoff that triggers precisely when the block is not won. With suitable depth and an explicit execution
subsidy, the miner can transform a highly volatile per-block revenue stream into a controlled cash-flow
profile without requiring migration to the largest pools [25].
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6.4.8 How Hedging Hashrate Supports Mining Decentralization

Bitcoin mining is designed as a probabilistic winner-take-all contest [13]. Even when hashrate shares
are stable, the realized winner of the next block is uncertain, and Bitcoin miner revenue arrives in
lumpy, path-dependent bursts rather than as a smooth cash flow. This variance is not an accident. It
is a direct implication of Bitcoin’s permissionless security model, where block production is allocated by
open competition rather than by a trusted scheduler [23]. In practice, however, variance creates strong
pressure toward pooling and toward payout schemes that smooth miner income [28, 29]. Empirically,
mining power is concentrated in a small number of pools, and concentration can also arise within
pools [27]. These dynamics matter because permissionless systems rely on the absence of controlling
coalitions at the settlement layer, and coalition incentives can naturally push toward mergers and
centralization [19].

Mining outcomes also remain intrinsically uncertain at decision-relevant horizons. For most pools,
“will this pool mine the next block?” has probability far from 0 or 1, and does not converge to
certainty prior to resolution. The same is true of short-horizon mining risks that matter operationally,
such as adverse luck over a window and discrete protocol shocks like a positive difficulty adjustment.
Persistent uncertainty sustains two-sided trading demand and repeated settlement cycles, which makes
these mining-hedge markets economically attractive to run at scale. In this sense, mining variance is
not only a risk for miners. The variance and uncertainty of the system itself is a structural source of
market-making profitability for prediction market liquidity provision.

A profitable hedging venue can also generate a positive side effect for the Bitcoin ecosystem by func-
tioning as a variance-insurance layer. Pool selection is partly an insurance decision. PPLNS-style pools
expose miners to more luck variance, while FPPS-style pools reduce miner variance by shifting risk
onto the operator [28, 29, 32]. This tends to favor larger pools and well-capitalized operators, increas-
ing concentration pressure [27, 19]. Mining-hedge markets target the root economic driver. If miners
can buy protection that pays in “drought” states, smaller PPLNS pools can attract miners without
requiring them to bear intolerable variance. If small FPPS operators can hedge negative luck relative
to expected block share, they can offer stable payouts with less balance-sheet strain [25]. By lowering
the variance premium that otherwise pushes participants toward the largest pools, hedging markets
enlarge the feasible set of decentralized pooling equilibria and can reduce concentration pressure in
practice [27, 19].

This decentralization side effect is significant because Bitcoin’s monetary value proposition depends
on credible neutrality and censorship resistance. Bitcoin was proposed as a peer-to-peer electronic
cash system precisely to enable value transfer without reliance on trusted intermediaries [23]. Bitcoin’s
distinctive role is as neutral monetary infrastructure ensures that it is harder to capture, censor, or
selectively exclude than institutionally permissioned payment systems [5, 3]. On this view, neutrality is
not a branding choice. It is an institutional property grounded in the absence of concentrated control
points in the settlement process. Because mining determines transaction inclusion and final settle-
ment, concentration in mining can become a practical chokepoint, weakening the system’s neutrality.
Accordingly, any mechanism that reduces structural incentives toward mining centralization supports
the credibility of Bitcoin as neutral money, and thereby supports the long-run value proposition of

Bitcoin-native financial infrastructure.
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7 Conclusion

We have described a Bitcoin-native prediction market that uses an automated market maker to convert
dispersed, time-varying beliefs into a continuously updated public forecast on clearly stated, objectively
verifiable financial events. The mechanism is engineered around two design requirements. First, trade
execution is determined by a cost-function rule that provides a clear, auditable accounting of cash-
in versus contingent payout, together with a finite and explicitly controlled worst-case exposure set
by the initial liquidity subsidy. Second, market depth adapts to participation so that early markets
remain responsive while mature markets become progressively more stable, improving execution quality
and reducing volatility as open interest grows. These properties make the system suitable for fully
collateralized, Bitcoin-denominated event contracts that can be operated with transparent risk limits.

The broader claim is that the platform’s primary product is not trade flow but the forecast itself: a
structured probability signal that can be reused for decision-making across time horizons and asset
classes. By separating execution economics from the probability representation shown to users, the
design preserves rigorous settlement guarantees while still producing an interpretable “weather map”
of financial uncertainty. What remains is empirical validation and operational hardening: calibrating
parameters against real order flow, measuring forecast calibration and error under realistic participa-
tion, and extending the same settlement-and-risk framework to more diverse market mechanisms while
maintaining the same clarity of guarantees.
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A Bitcoin as a High-Value Target for Forecasting

Bitcoin is a digital bearer asset native to a permissionless payment network [23]. It is neither an
equity claim nor a contractual right against an issuer. Accordingly, it has no management team, no
cash-flow schedule, no dilution events, and no privileged disclosure cycle. Its market price is therefore
best interpreted as a market-clearing statistic for a globally traded monetary commodity.

A.1 Bitcoin as neutral monetary infrastructure

Money is a functional kind, and a monetary asset is evaluated by the extent to which it can serve, at
least locally, as a means of exchange, a store of value, and a unit of account [5, 23]. Bitcoin partially
realizes the digital cash ideal by combining final settlement on a public ledger with payment-layer
constructions that support high-frequency exchange at low marginal cost while preserving ultimate
settlement on the base layer [6]. In this sense, Bitcoin can be treated as neutral monetary infrastructure:
it supports exchange without an issuer narrative, and it does so on rails designed to be broadly accessible
(permissionless) rather than institutionally gatekept [5, 3, 4].1 Even when Bitcoin is not the dominant
unit of account for the broader economy, it remains a coherent unit of account within Bitcoin-native
systems, that is, in applications whose liabilities, collateral, and settlement are natively denominated
in bitcoin units (sats) [2].

A.2 Why Bitcoin is a natural focus for prediction-market forecasting

Prediction markets are marketplaces for information in which trades aggregate dispersed beliefs into
a publicly observable price. For such markets, the settlement asset should be digitally transferable,
operationally neutral with respect to jurisdictional payment intermediaries, and natively compatible
with global, continuous online participation. Bitcoin is well positioned on these criteria insofar as
it is designed to tramnsfer value and can support exchange without reliance on an issuing firm or a
centrally administered payments operator [23, 3, 2]. This provides a principled justification for Bitcoin-
native event contracts: the same object that functions as digital cash for internet commerce can also
function as the settlement medium for information commerce. On the mechanism side, cost-function
market makers and market scoring rules provide a standard way to transmute sequential trading into
probability outputs [16, 11, 12]. Liquidity-sensitive automated market makers further permit market
depth to adapt to growing participation [24].

Bitcoin is also unusually well suited as a forecasting target. Because it is globally traded and information
arrives continuously, there is no privileged disclosure cycle to anchor belief updates. Because it is a
bearer-like asset, its market microstructure is less constrained by issuer actions such as buybacks,
dividends, or guidance. For a forecasting business, these features concentrate the forecasting problem

IBitcoin (the protocol and bearer asset) is conceptually distinct from the regulated intermediaries that custody it,
transmit it, or broker access to it. The protocol does not itself implement identity, suitability, reversibility, dispute
resolution, or transaction-monitoring functions. Accordingly, legal duties and operational risks arise primarily at the
application interface where a firm intermediates customer access to the network, including activities commonly regulated
as custody, money transmission, exchange, and settlement. For this reason, Glimpse Ltd. treats Bitcoin-native settlement
as technologically permissionless externally but governed internally: to the extent we hold or transfer Bitcoin on behalf
of customers, we apply controls consistent with applicable financial crime, safeguarding, and market-conduct expecta-
tions, including customer due diligence, transaction monitoring, sanctions screening, and governance over custody and

settlement processes.
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on the dynamics of collective belief under uncertainty rather than on idiosyncratic corporate actions. In
short, Bitcoin generates a steady stream of verifiable, decision-relevant questions with clean settlement
rules, which is exactly the substrate prediction markets require.

A.3 Long-horizon structure and descriptive power-law heuristics

A recurring empirical claim is that Bitcoin’s long-run price evolution is approximately consistent with

a power-law relationship in time (equivalently, a linear relationship in log-log space),
P(t) = At log P(t) =log A+ alogt,

often motivated by network-growth dynamics and diffusion-style adoption effects [30, 9, 26, 31]. We
treat these external frameworks as heuristic motivation rather than as proof. Our use of this functional
form is descriptive and intended only to characterize long-horizon structure in the realized series.

BTC FULL MODEL, PRICE = POWER LAW IN TIME +SINE 4 YEARS PERIOD + EXPONENTIAL DECAY

Price Simulated BTC

Figure 4: Tllustrative power-law framing from prior work (included for intuition; not relied on as proof).

Using N = 5,499 observations, we fit the one-factor model

log(index;) = By + B1 log(time;) + ¢,

and obtain R? = 0.963 with 8; = 5.8065 (95% CI: [5.777, 5.837]) and 3y = —39.0236. This fit indicates
that a simple log-log specification explains a large fraction (over 95%) of long-horizon variance in
the historical series. The regression is descriptive and does not imply future adherence to the same
relationship, particularly under structural regime change.
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Figure 5: Independent log-log fit and confidence bands (illustrative). Black: observed series. Blue:
fitted log-log trend with confidence intervals.

A.4 Short-Horizon Uncertainty and Why Probabilities Matter

Long-horizon structure in price levels can coexist with substantial short-horizon uncertainty in returns.
A log-log regression concerns the slow-moving component of log P(t) as a function of time and can
therefore achieve high in-sample R? even when short-run returns remain difficult to forecast. This is
not a contradiction. It reflects the separation between smooth long-run movements in the price level
and highly variable day-to-day and week-to-week changes.

Over decision-relevant horizons, Bitcoin returns are empirically heavy-tailed, meaning extreme moves
occur more often than a Gaussian benchmark would predict. Volatility is also clustered, meaning large
moves tend to be followed by large moves, while quiet periods tend to persist [10]. For this reason,
empirical studies frequently model Bitcoin risk using conditional-variance frameworks such as GARCH
and multivariate extensions, which formalize the practical point that the current risk level depends on
recent market turbulence and can vary substantially over time [10, 22].

Crash episodes are particularly salient because they are abrupt relative to typical movements in the un-
derlying trend and because they are economically consequential. This motivates empirical approaches
that treat crashes and large drawdowns as low-frequency but decision-relevant events rather than as
negligible residual noise [20]. More broadly, short-horizon uncertainty can shift with macro conditions
and cross-asset linkages. In particular, empirical work has documented meaningful relationships be-
tween Bitcoin and technology equity indices and other macro-financial indicators over some samples,
while other traditional hedges such as gold may be weaker or unstable depending on specification and
horizon [1, 14].

These facts motivate the forecasting product that event contracts provide. When risk is high and
unstable, market participants often need an interpretable statement of which outcomes are likely over
a fixed horizon, rather than an undifferentiated exposure to the spot asset. Event contracts implement
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this translation by converting a price question into a proposition with a clear settlement rule, such
as “BTC is above X by date T,” “BTC experiences a drawdown of at least d% over horizon T',”
or “BTC outperforms benchmark B over horizon T.” Trading then produces a market price that
can be read as a market-implied probability, which is a practically usable forecast to the extent that
historical calibration and hit rates are strong. Because contracts can be defined on thresholds, relative
performance, and crash-like events, they can also provide targeted hedges that address specific adverse
scenarios without requiring continuous rebalancing in the underlying asset [22, 20, 1].

A.5 Bitcoin Mining, Network Difficulty, and Block Reward Variance

Bitcoin mining is a large, globally distributed industry with cash flows that are intrinsically stochastic
and strongly regime-dependent. At the protocol level, block production is a race in which the probabil-
ity of winning the next block is approximately proportional to a miner’s share of global hashrate. Over
intervals where the global hashrate and difficulty are approximately constant, the time to the next
block is well modeled as exponential and block arrivals are well approximated by a Poisson process.
The resulting payout stream is therefore lumpy even when a miner’s hashrate share is stable.

This uncertainty caused by variance inherient to the Bitcoin protocol creates real business risks for
Bitcoin miners. For a miner with hashrate h facing network difficulty D, the expected number of
blocks found over a horizon t scales linearly in ht/D, and the variance in blocks found is of the same
order as the mean. Small and mid-sized miners therefore face large relative dispersion, including long
droughts with zero block rewards, which directly motivates variance-reducing institutional structures
such as mining pools and share-based payout schemes. In classical analyses of pooled mining, these
schemes can be viewed as contracts that trade off immediacy, operator balance-sheet risk, and the
variance borne by individual miners, and the details of reward design matter for both fairness and
attack surface.

The difficulty adjustment introduces an additional, discrete source of uncertainty that is economically
first-order for operational planning. Bitcoin retargets difficulty every 2016 blocks to stabilize expected
block time near ten minutes. The retarget rule is a feedback mechanism that depends on realized block
times over the previous epoch. Consequently, when global hashrate grows rapidly within an epoch,
blocks tend to arrive faster than the ten-minute target during that epoch, and the subsequent difficulty
adjustment tends to be positive. A positive adjustment reduces expected bitcoin earned per unit of
hashrate in the next epoch, holding fees and other conditions fixed. This creates a predictable type
of shock, but an uncertain magnitude and timing, because the adjustment is triggered by a random
block-arrival process and because the global hashrate is itself time-varying.

Block rewards also contain a second source of variance beyond win probability. The per-block miner
revenue is the sum of the protocol subsidy and transaction fees. While the subsidy is deterministic
over a halving epoch, transaction fees are time-varying and can be materially larger or smaller across
blocks. As fees become a larger share of miner revenue, the variability of realized per-block revenue
increases, and reward-sharing schemes that are not carefully aligned to the timing of fee variability can
become economically distortive.

These features jointly make mining a natural forecasting target for Bitcoin-native event contracts.
Unlike generic price forecasting, mining variables are operational primitives. They map directly into
balance-sheet and cash-flow risk, they are observed on-chain or from widely monitored network statis-
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tics, and they admit objective settlement rules. The contract designs below illustrate how difficulty
dynamics, block-arrival variance, and fee regimes can be translated into probability forecasts that
miners and other Bitcoin participants can use for planning and hedging.

Difficulty and hashrate event contracts target the protocol variable that turns global competition into
miner unit economics. The basic forecasting question is concrete and settlement-clean: ”Will the
next difficulty adjustment be positive, and will it exceed a threshold 6”7 These questions matter
because difficulty directly determines how many sats some given amount of hashrate can be expected
to earn in the next epoch, holding the fee environment fixed. A positive adjustment therefore induces
a discrete revenue shock that miners must absorb immediately in operating margins. The dominant
driver of miner profitability is still the Bitcoin price, because hashprice is increasing in BTC price and
decreasing in difficulty, but difficulty-forecast markets isolate the protocol component of hashprice risk.
They allow a miner to hedge the revenue impact of rising network competition even when the BTC
price path is uncertain.

Block-arrival and luck event contracts target the intrinsic variance of winner-take-all block production.
The operational question is again explicit: ”Will a given pool mine fewer than k blocks over the next
T blocks”? A complementary variant that is convenient for interface and frequent settlement is: will
pool i fail to mine the next block? These questions matter because realized block counts over short
horizons can deviate sharply from expectation even when hashrate share is stable. For miners and
pool operators, under-production over a payroll, hosting, or debt-service window is a solvency and
liquidity problem. A contract that pays precisely in the under-production state functions as variance
insurance against cash-flow droughts. This has broader system relevance because variance pressure
is a primary driver of pooling and of concentration dynamics. When variance is expensive to bear,
miners rationally migrate toward the largest pools and the most capitalized payout schemes. A liquid
hedging layer relaxes that pressure by allowing smaller participants to buy protection rather than to
consolidate.

Fee-regime event contracts target the part of miner revenue and user cost that is most visible to the rest
of the ecosystem. The forecasting question can be stated in a way that is directly useful for operations:
"Will the (average) transaction fees per block exceed f BTC in block n (or between blocks H and
H + n)”? Tail formulations are also natural, such as whether at least one block in the next n blocks
contains total fees above a stress threshold fiax. These questions matter to miners because fees are an
increasingly important component of per-block revenue and a major source of variance conditional on
winning a block. They matter to Lightning node operators because high-fee regimes raise the cost of
channel opens, closes, and rebalancing, and can force changes in liquidity management. They matter
to exchanges and payment processors because the expected probability of a high-fee regime determines
whether to accelerate batching, delay non-urgent withdrawals, or adopt fee-smoothing policies. They
matter to ordinary users because fees determine whether on-chain usage is economical on a given
horizon. By turning near-term congestion and volatility conditions into market-implied probabilities
with clean settlement rules, fee-regime contracts provide an interpretable forecast that can be acted on
directly.

Taken together, these mining-adjacent forecasting targets decompose the economic uncertainty faced
by Bitcoin participants into separable components. Price markets primarily address directional BTC
exposure. Difficulty markets address protocol competition risk that moves hashprice mechanically.
Block-arrival markets address payout timing risk that cannot be diversified away by small participants.
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Fee-regime markets address the volatility of the user-cost and security-budget channel that links miners
and transactors. The economic data of the Bitcoin network is a natural domain in which event contracts
function as variance insurance rather than as generic speculation.

Mining event contracts also matter beyond miner balance sheets. Mining is increasingly entangled
with energy markets because miners are unusually flexible electricity consumers. Miners can curtail
consumption quickly, can locate near stranded supply, and can monetize curtailed renewable generation
and other wasted energy. In grids with increasing shares of variable renewables, this flexibility is
economically valuable. Mining therefore sits at the intersection of two volatile systems. Bitcoin-
denominated revenue is volatile, and power prices and curtailment regimes can be volatile. Forecasting
instruments that turn these uncertainties into tradeable probabilities can reduce the variance premium
faced by miners and by capital providers to miners.

Mining markets are tightly coupled to the broader Bitcoin financial system through a real economic
feedback loop. When mining is persistently unprofitable for a marginal set of operators, shutdowns
reduce the effective hashrate, and the next difficulty adjustment partially restores expected profitability
per unit of hashrate. This mechanism does not create a hard price floor for Bitcoin, but it does create
a stabilizing channel for miner economics. Prediction markets that forecast difficulty, block reward
variance, and future fees make this legible. They also create new derivative instruments for an industry
whose core risk is variance rather than mere directional exposure.

A.6 Summary

Bitcoin is a compelling focus for forecasting because it is (i) a global monetary commodity whose
price is primarily a market signal rather than an issuer narrative, (ii) plausibly shaped by measurable
long-horizon regularities that can be described in simple functional forms, and (iii) sufficiently volatile
over short and medium horizons that probability forecasts are decision-relevant. In addition, Bitcoin’s
origin as an attempt at peer-to-peer electronic cash provides an institutional rationale for Bitcoin-
native information markets: a prediction market is a form of commerce, and a neutral, digitally native
settlement medium strengthens the case for global participation in a Bitcoin economy [23, 5, 3].
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B Proper scoring rules elicit truthful beliefs
Consider a binary event with outcomes 2 = {Y, N}. A forecaster has a true belief
p=Pr(Y) € (0,1), Pr(N)=1-p,

but reports a probability r € (0,1) for Y (and 1 — r for N). A scoring rule specifies payoffs sy (r) if
Y occurs and sy (r) if N occurs. Under risk neutrality, the forecaster chooses  to maximize expected
score

Epls(r)] :==psy (r) + (L —p) sn(r).
We first illustrate properness with the quadratic (Brier) rule in the binary setting. Take
sy(r) = —(1—7)2, sy(r) = —r2.

Then
Differentiating in r yields

so the unique maximizer is r* = p.

The same incentive appears under the logarithmic score. Let

sy (r) =logr, sn(r) =log(l —r).

Then
Ep[s(r)] = plogr + (1 — p)log(1 — ),
and d !
p —p
—E == — .
dr p[s(r)] r 1-—r

Setting the derivative to zero gives p(1 —r) = (1 — p)r, hence again r* = p.

By contrast, a non-proper rule can reward coarse, overconfident reporting. Consider the rule
sy(r)=1{r > 1/2}, sy(r)y=1{r <1/2},

which pays 1 if the realized outcome was assigned probability at least 1/2 and 0 otherwise. The
expected score becomes
D, r>1/2,

Epls(r)] = 1—p, r<1/2,

(with any tie convention at r = 1/2). If p > 1/2, then every report r > 1/2 yields the same expected
score p, so the rule fails to elicit the correct probability magnitude and only elicits which side of 1/2

the forecaster is on.

This calculation makes the incentive distinction concrete. Under a proper scoring rule, the report r is
uniquely pinned down by first-order optimality at the true belief p. Under a non-proper rule, expected
payoff can be flat over wide regions of reports, so the mechanism does not discipline probability reports
toward truthfulness.
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